Advertisement

Adaptive Mesh Smoothing for Feature Preservation

  • Weishi Li
  • Li Ping Goh
  • Terence Hung
  • Shuhong Xu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3483)

Abstract

A simple algorithm is presented in this paper to preserve the feature of the mesh while the mesh is smoothed. In this algorithm, the bilateral filter is modified to incorporate local first-order properties of the mesh to enhance the effectiveness of the filter in preserving features. The smoothing process is error-bounded to avoid over-smoothing the mesh. Several examples are given to demonstrate the effectiveness of this algorithm in preserving the feature while removing noise from the mesh.

Keywords

Tangent Plane Anisotropic Diffusion Sharp Feature Bilateral Filter Vertex Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. Proceeding of Visualization and Mathematics (2002)Google Scholar
  2. 2.
    Taubin, G.: A signal processing approach to fair surface design. Computer Graphcis, 351–358 (1995)Google Scholar
  3. 3.
    Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. Computer Graphics, 317–324 (1999)Google Scholar
  4. 4.
    Peng, J., Strela, V., Zorin, D.: A simple algorithm for surface denoising. IEEE Visualization, 107–112 (2001)Google Scholar
  5. 5.
    Bajaj, C., Xu, G.: Anisotropic diffusion on surfaces and functions on surfaces. ACM Trans. Graph. 22(1), 4–32 (2003)CrossRefGoogle Scholar
  6. 6.
    Clarenz, U., Diewald, U., Rumpf, M.: Anisotropic geometric diffusion in surface Processing. IEEE Visualization, 397–405 (2000)Google Scholar
  7. 7.
    Tasdizen, T., Whitaker, R., Burchard, P., Osher, S.: Geometric surface smoothing via anisotropic diffusion of normals. IEEE Visualization, 125–132 (2002)Google Scholar
  8. 8.
    Taubin, G.: Linear anisotropic mesh filtering. Tech. Rep. IBM Research Report RC 2213 Google Scholar
  9. 9.
    Jones, T.R., Durand, F., Desbrun, M.: Non-iterative, feature-preserving mesh smoothing. ACM Trans. Graph. 22(3), 943–949 (2003)CrossRefGoogle Scholar
  10. 10.
    Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. ACM Trans. Graph. 22(3), 950–953 (2003)CrossRefGoogle Scholar
  11. 11.
    Guskov, I., Sweldens, W., Schröder, P.: Multiresolution signal processing for meshes. Computer Graphics, 325–334 (1999)Google Scholar
  12. 12.
    Ohtake, Y., Belyaev, A., Bogaevski, I.: Mesh regularization and adaptive smoothing. Computer-Aided Design 33, 789–800 (2001)CrossRefGoogle Scholar
  13. 13.
    Smith, S., Brady, J.: SUSAN-a new approach to low level image processing. IJCV 23, 45–78 (1997)CrossRefGoogle Scholar
  14. 14.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proc. IEEE Int. Conf. on Computer Vision, pp. 836–846 (1998)Google Scholar
  15. 15.
    Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans. Graph. 21(3), 257–266Google Scholar
  16. 16.
    Elad, M.: On the bilateral filter and ways to improve it. IEEE Trans. On Image Processing 11(10), 1141–1151 (2002)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Harris, J.W., Stocker, H.: Handbook of mathematics and computational science. Springer, New York (1998)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Weishi Li
    • 1
  • Li Ping Goh
    • 1
  • Terence Hung
    • 1
  • Shuhong Xu
    • 1
  1. 1.Institute of High Performance ComputingSingapore

Personalised recommendations