Identity-Based Key Agreement Protocols in a Multiple PKG Environment

  • Hoonjung Lee
  • Donghyun Kim
  • Sangjin Kim
  • Heekuck Oh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3483)


To date, most identity-based key agreement protocols are based on a single PKG (Private Key Generator) environment. In 2002, Chen and Kudla proposed an identity-based key agreement protocol for a multiple PKG environment, where each PKG shares identical system parameters but possesses a distinct master key. However, it is more realistic to assume that each PKG uses different system parameters. In this paper, we propose a new two party key agreement protocol between users belonging to different PKGs that do not share system parameters. We also extend this protocol to a tripartite key agreement protocol. Our two party protocol requires the same amount of pairing computation as Smart’s protocol for a single PKG environment and provides PKG forward secrecy. We show that the proposed key agreement protocols satisfy every security requirements of key agreement protocols.


ID-based cryptosystem bilinear map key agreement protocol multiple PKG 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shamir, A.: Identity-based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Franklin, M.: Identity-based Encryption from Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Smart, N.: An Identity-based Authenticated Key Agreement Protocol Based onWeil Pairing. Electronic Letters 38, 630–632 (2002)zbMATHCrossRefGoogle Scholar
  4. 4.
    Chen, L., Kudla, C.: Identity-based Authenticated Key Agreement Protocols from Pairings. In: Proceedings of the 16th IEEE Computer Security Foundations Workshop, pp. 219–233. IEEE Computer Society Press, Los Alamitos (2003)CrossRefGoogle Scholar
  5. 5.
    Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Al-Riyami, S., Patterson, K.: Tripartite Authenticated Key Agreement Protocols from Pairings. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 332–359. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Zhang, F., Liu, S., Kim, K.: ID-Based One Round Authenticated Tripartite Key Agreement Protocols with Pairings. Crypology ePrint Archive, Report 2002/122Google Scholar
  8. 8.
    Shim, K.: Efficient One Round Tripartite Authenticated Key Agreement Protocol Based on Weil Pairing. Electronic Letters 39, 208–209 (2003)CrossRefGoogle Scholar
  9. 9.
    Cheng, Z., Vasiu, L., Comley, R.: Pairing-Based One-Round Tripartite Key Agreement Protocols. Cryptology ePrint Archive, Report 2004/079Google Scholar
  10. 10.
    Chen, L., Kudla, C.: Identity-based Authenticated Key Agreement Protocols from Pairings. Cryptology ePrint Archive, Report 2002/184Google Scholar
  11. 11.
    Menezes, A., Okamoto, T., Vanstone, S.: Reducing Elliptic Curve Logarithms to Logarithms in a Finite Field. Transaction of Information Theory 39, 1639–1646 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Frey, G., Ruck, H.: A Remark Concerning m-divisibility and The Discrete Logarithm in The Divisor Class Group of Curves. Mathematics of Computation 62, 865–874 (1994)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Hoonjung Lee
    • 1
  • Donghyun Kim
    • 1
  • Sangjin Kim
    • 2
  • Heekuck Oh
    • 1
  1. 1.Department of Computer Science and EngineeringHanyang UniversityRepublic of Korea
  2. 2.School of Internet Media EngineeringKorea University of Technology and EducationRepublic of Korea

Personalised recommendations