Security Flaws in Several Group Signatures Proposed by Popescu

  • Guilin Wang
  • Sihan Qing
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3482)

Abstract

In resent years, Popescu et al. proposed several group signature schemes in [8, 9, 10, 11] that based on the Okamoto-Shiraishi assumption. Their schemes are claimed to be secure. However, we identify several security flaws in their schemes and then show that these schemes are all insecure. By exploiting those flaws, anybody (not necessarily a group member) can forge valid group signatures on arbitrary messages of his/her choice. In other words, these schemes are universally forgeable.

Keywords

group signature digital signature information security 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Ateniese, G., Tsudik, G.: Some open issues and new directions in group signature schemes. In: Franklin, M.K. (ed.) FC 1999. LNCS, vol. 1648, pp. 196–211. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Camenisch, J., Stadler, M.: Effient group signature schemes for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Camenisch, J., Michels, M.: A group signature scheme with improved efficiency. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 160–174. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Camenisch, J., Michels, M.: A group signature scheme based on an RSA-variant. Technical Report RS-98-27, BRICS, University of Aarhus, An earlier version appears in [4] (November 1998)Google Scholar
  6. 6.
    Chaum, D., van Heyst, E.: Group Signatures. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 257–265. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  7. 7.
    Okamoto, T., Shiraishi, A.: A fast signature scheme based on quadratic inequalities. In: Proceedings of IEEE Symposium on Security and Privacy, pp. 123–132. IEEE Computer Society Press, Los Alamitos (1985)Google Scholar
  8. 8.
    Popescu, C.: Group signature schemes based on the difficulty of computation of approximate e-th roots. In: Proc. of Protocols for Multimedia Systems, PROMS 2000, pp. 325–331. Cracow, Poland (2000)Google Scholar
  9. 9.
    Popescu, C.: An efficient group signature scheme for large groups. Studies in Informatics and Control Journal 10(1), 7–14 (2001), http://www.ici.ro/ici/revista/sic2001-1/art1.htm Google Scholar
  10. 10.
    Popescu, C.: A group blind signature scheme based on the Okamoto-Shiraishi assumption. Romanian Journal of Information Science and Technology 4(5) (2002)Google Scholar
  11. 11.
    Popescu, C., Noje, D., Bede, B., Mang, I.: A group signature scheme with revocation. In: Proc. of 4th EURSIP Conference focused on Video/Image Processing and Multimedia Communications EC-VIP-MC 2003, Zagreb, Coratia, 2-5 July, pp. 245–250. IEEE Computer Society, Los Alamitos (2003), available via IEEExplore,http://ieeexplore.ieee.org/
  12. 12.
    Song, D.X.: Practical forward secure group signature schemes. In: ACM CCS 2001, pp. 225–234. ACM press, New York (2001)CrossRefGoogle Scholar
  13. 13.
    Wang, G., Bao, F., Zhou, J., Deng, R.H.: Security remarks on a group signature scheme with member deletion. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 72–83. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Guilin Wang
    • 1
  • Sihan Qing
    • 2
  1. 1.Institute for Infocomm Research (I2R)Singapore
  2. 2.ERCIST, Institute of SoftwareChinese Academy of SciencesBeijing

Personalised recommendations