Obtaining True-Random Binary Numbers from a Weak Radioactive Source

  • Ammar Alkassar
  • Thomas Nicolay
  • Markus Rohe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3481)


In this paper, we present a physical random number generator (RNG) for cryptographic applications. The generator is based on alpha decay of Americium 241 that is often found in common household smoke detectors. A simple and low-cost implementation is shown to detect the decay events of a radioactive source. Furthermore, a speed-optimized random bit extraction method was chosen to gain a reasonable high data rate from a moderate radiation source (0.1 μCi). A first evaluation by applying common suits for analysis of statistical properties indicates a high quality of the data delivered by the device.


Random Number Generator Random Data Voltage Control Oscillator Decay Event Cryptographic Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Monrose, F., Reiter, M.K., Li, Q., Wetzel, S.: Cryptographic key generation from voice. In: Proceedings of the IEEE Symposium on Research in Security and Privacy, pp. 202–212 (2001)Google Scholar
  2. 2.
    Murry, H.F.: A general approach for generating natural random variables. IEEE Transactions on Computers, 1210–1214 (1970)Google Scholar
  3. 3.
    Thomson, W.E.: Ernie - a mathematical and statistical analysis. Journal of the Royal Statistical Society Series B 101 , 301–333 (1959)Google Scholar
  4. 4.
    Jun, B., Kocher, P.: The intel number generator. White paper prepared for intel corporation. Cryptography Research, Inc. (1999)Google Scholar
  5. 5.
    Stefanov, A., Gisin, N., Guinnard, O., Guinnard, L., Zbinden, H.: Optical quantum random number generator. Online (1999)Google Scholar
  6. 6.
    Figotin, A., Vitebskiy, I., Popovich, V., Stetsenko, G., Molchanov, S., Gordon, A., Quinn, J., Stavrakas, N.: Random number generator based on the spontaneous alpha-decay. U.S. patent Appl. No.: 10/127,221 (2003)Google Scholar
  7. 7.
    Gude, M.: Ein quasi-idealer Gleichverteilungsgenerator basierend auf physikalischen Zufallsphänomenen. PhD thesis, RWTH Aachen (1987)Google Scholar
  8. 8.
    Lide, D. (ed.): CRC Handbook of Chemistry and Physicas, 84th edn. CRC Press, Boca Raton (2003)Google Scholar
  9. 9.
    Haight, F.A.: Handbook of the Poisson Distribution. John Wiley & Sons Inc., Chichester (1967)zbMATHGoogle Scholar
  10. 10.
    Koutsky, Z.: Theorie der Impulszähler und ihre Anwendung. Aplikace Matematiky 7, 116–138 (1962)zbMATHGoogle Scholar
  11. 11.
    Vincent, C.H.: The generation of truely random binary numbers. Journal of Physics E: Scientific Instruments 3, 594–598 (1970)CrossRefGoogle Scholar
  12. 12.
    Gude, M.: Concept for a high performance random number generator based on physical random phenomena. Frequenz 39, 187–190 (1985)Google Scholar
  13. 13.
    Vincent, C.H.: Precautions for accuracy in the generation of truely random binary numbers. Journal of Physics E: Scientific Instruments 4, 825–828 (1971)CrossRefGoogle Scholar
  14. 14.
    Kraus, G.: Stochastische Abhängigkeit von in schneller Folge erzeugten gleichverteileten diskreten Zufallsereignissen. Frequenz 35, 274–277 (1981)Google Scholar
  15. 15.
    Walker, J.: Hotbits. Online (2003),
  16. 16.
    von Neumann, J.: Various techniques used in connection with random digits. Applied Mathematics Series, pp. 36–38 (1951)Google Scholar
  17. 17.
    Rohe, M.: RANDy - A True-Random Generator Based on Radioactive Decay. Technical report, Saarland University (2003),
  18. 18.
    Pitman, J.: Probability. Springer, New York (1993)zbMATHGoogle Scholar
  19. 19.
    Marsaglia, G.: Diehard battery of tests of randomness (The Marsaglia random number CDROM)Google Scholar
  20. 20.
    Rukhin, A., Sato, J., Nechvatal, J., Smid, M., Barker, M., Leigh, S., Levenson, M., Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. NIST Special Publication (2001)Google Scholar
  21. 21.
    Schindler, W.: Efficient online tests for true random number generators. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, p. 103. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ammar Alkassar
    • 1
  • Thomas Nicolay
    • 2
  • Markus Rohe
    • 3
  1. 1.Sirrix AG security technologiesHomburgGermany
  2. 2.Radio-Frequency Research GroupSaarland UniversitySaarbrückenGermany
  3. 3.Cryptography Research GroupSaarland UniversitySaarbrückenGermany

Personalised recommendations