Advertisement

On Improvement for Normalizing Iris Region for a Ubiquitous Computing

  • Bong Jo Joung
  • Chin Hyun Chung
  • Key Seo Lee
  • Wha Young Yim
  • Sang Hyo Lee
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3480)

Abstract

Iris patterns are believed to be an important class of biometrics suitable for subject verification and identification applications. An efficient approach for iris recognition through an iris region normalization is presented in this paper. An efficient iris region normalization consists of a doubly polar coordinate and noise region exclude. From this evaluation, we obtain iris code of small size and very high recognition rate. This effort is intended to enable a human authentication in small embedded systems, such as an integrated circuit card (smart cards).

Keywords

Smart Card Ubiquitous Computing Iris Region Haar Wavelet Match Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashbourn, D.M.: Biometrics: Advanced identify verification: The complete guide. Springer, Heidelberg (2000)Google Scholar
  2. 2.
    Daugman, J.G.: High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Analysis and Machine Intelligence 15(11), 1148–1161 (1993)CrossRefGoogle Scholar
  3. 3.
    Daugman, J.G.: Recognizing persons by their iris patterns. Cambridge University, Cambridge (1997)Google Scholar
  4. 4.
    Wildes, R.P.: Iris recognition: An emerging biometric technology. Proceedings of the IEEE 85(9), 1348–1363 (1997)CrossRefGoogle Scholar
  5. 5.
    Boles, W.W., Boashash, B.: A human identification technique using images of the iris and wavelet transform. IEEE Trans. on Signal Processing 46(4), 1185–1188 (1998)CrossRefGoogle Scholar
  6. 6.
    Young, R.K.: Wavelet and signal processing. Kluwer Academic Publisher, Dordrecht (1992)Google Scholar
  7. 7.
    Rioul, O., Vetterli, M.: Wavelet and signal processing. IEEE Signal Processing Magazine, 14–38 (October 1981)Google Scholar
  8. 8.
    Strang, G., Nguyen, T.: Wavelet and filter banks. Wesley-Cambridge Press (1996)Google Scholar
  9. 9.
    Daugman, J.G.: High confidence recognition of persons by rapid video analysis of iris texture. European Convention on Security and Detection (408) (May 1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Bong Jo Joung
    • 1
  • Chin Hyun Chung
    • 1
  • Key Seo Lee
    • 1
  • Wha Young Yim
    • 1
  • Sang Hyo Lee
    • 1
  1. 1.Department of Information and Control EngineeringKwangwoon UniversitySeoulKorea

Personalised recommendations