Advertisement

On the Generalized Lauder-Paterson Algorithm and Profiles of the k-Error Linear Complexity for Exponent Periodic Sequences

  • Takayasu Kaida
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3486)

Abstract

The Lauder-Paterson algorithm gives the profile of the k-error linear complexity for a binary sequence with period 2 n . In this paper a generalization of the Lauder-Paterson algorithm into a sequence over GF(p m ) with period p n , where p is a prime and m, n are positive integers, is proposed. We discuss memory and computation complexities of proposed algorithm. Moreover numerical examples of profiles for balanced binary and ternary exponent periodic sequences, and proposed algorithm for a sequence over GF(3) with period 9(= 32) are given.

Keywords

exponent periodic sequence Games-Chan algorithm k-error linear complexity Lauder-Paterson algorithm pseudo-random sequence Stamp-Martin algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dai, Z., Imamura, K.: Linear Complexity for One-Symbol Substitution of a Periodic Sequence over GF(q). IEEE Trans. on Information Theory 44, 1328–1331 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ding, C., Shan, W., Xiao, G.: The Stability Theory of Stream Ciphers. LNCS, vol. 561. Springer, Heidelberg (1991)zbMATHGoogle Scholar
  3. 3.
    Games, R., Chan, A.: A Fast Algorithm for Determining the Complexity of a Binary Sequence with Period 2n. IEEE Trans. on Information Theory IT-29, 144–146 (1983)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Kaida, T., Uehara, S., Imamura, K.: An Algorithm for the k-Error Linear Complexity of Sequences over GF(p m) with Period p n, p a Prime. Information and Computation 151, 134–147 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Kaida, T., Uehara, S., Imamura, K.: A New Algorithm for the k-Error Linear Complexity of Sequences over GF(p m) with Period p n. In: Sequences and their Applications - Proceedings of SETA 1998, pp. 284–296. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    Kaida, T., Uehara, S., Imamura, K.: On the Profile of the k-Error Linear Complexity and the Zero Sum Property for Sequences over GF(p m) with Period p n. In: Sequences and their Applications - Proceedings of SETA 2001, pp. 218–227. Springer, Heidelberg (2001)Google Scholar
  7. 7.
    Kaida, T.: A Typical Profile of the k-Error Linear Complexity for Balanced Binary Sequences with Period 2n. submitted to IEICE Trans. Fundamentals, Special Section of Cryptography and Information Security (January 2005)Google Scholar
  8. 8.
    Kurosawa, K., Sato, F., Sakata, T., Kishinoto, W.: A Relationship between Linear Complexity and k-Error Linear Complexity. IEEE Trans. on Information Theory 46, 694–698 (2000)zbMATHCrossRefGoogle Scholar
  9. 9.
    Lauder, A.G.B., Paterson, K.G.: Computing the Error Linear Complexity Spectrum of a Binary Sequence of Period 2n. IEEE Trans. Inf. Theory 49, 273–280 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Stamp, M., Martin, C.: An Algorithm for the k-Error Linear Complexity of Binary Sequences with Period 2n. IEEE Trans. on Information Theory 39, 1398–1401 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Uehara, S., Imamura, K.: Linear Complexity of Periodic Sequences Obtained from GF(q) Sequences with Period q n − 1 by One-Symbol Insertion. IEICE Trans. on Fundamentals E79-A, 1739–1740 (1996)Google Scholar
  12. 12.
    Uehara, S., Imamura, K.: Linear Complexity of Periodic Sequences Obtained from GF(p) Sequences with Period p n − 1 by One-Symbol Deletion. IEICE Trans. on Fundamentals E80-A, 1164–1166 (1997)Google Scholar
  13. 13.
    Uehara, S., Imamura, K., Kaida, T.: Value distribution of linear complexity for q-ary periodic sequences with period p n, p a prime. IEICE Trans. Fundamentals E80-A, 920–921 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Takayasu Kaida
    • 1
  1. 1.Department of Information and Electronic EngineeringYatsushiro National College of TechnologyYatsushiro, KumamotoJapan

Personalised recommendations