Advertisement

Modelling a Protein Structure Comparison Application on the Grid Using PROTEUS

  • Mario Cannataro
  • Matteo Comin
  • Carlo Ferrari
  • Concettina Guerra
  • Antonella Guzzo
  • Pierangelo Veltri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3458)

Abstract

Bioinformatics applications manage complex biological data stored into distributed and often heterogeneous databases and require large computing power. Among these, protein structure comparison applications exhibit complex workflow structure, access different databases, require high computing power. Thus they could benefit of semantic modelling and Grid infrastructure. We present the modelling and development of the PROuST structure comparison application on the Grid using PROTEUS, a Grid-based Problem Solving Environment.

Keywords

Secondary Structure Hash Table Structural Alignment Activity Diagram Query Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldi, P., Brunak, S.: Bioinformatics: The Machine Learning Approach. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  2. 2.
    Cannataro, M., Comito, C., Lo Schiavo, F., Veltri, P.: Proteus, a grid-based problem solving environment for bioinformatics: Architecture and experiments. IEEE Computational Intelligence Bulletin 3(1), 7–18 (2004)Google Scholar
  3. 3.
    Cannataro, M., Talia, D.: Semantic and Knowledge Grids: Building the Next-Generation Grid. IEEE Intelligent Systems 19(1), 56–63 (2004)CrossRefGoogle Scholar
  4. 4.
    Comin, M., Guerra, C., Zanotti, G.: PROuST: A comparison method of three-dimensional structures of proteins using indexing techniques. J. of Computational Biology 11, 1061–1072 (2004)CrossRefGoogle Scholar
  5. 5.
    Dumas, M., ter Hofstede, A.H.M.: UML Activity Diagrams as a Workflow Specification Language. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, p. 76. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Ferrari, C., Guerra, C., Zanotti, G.: A grid-aware approach to protein structure comparison. Journal of Parallel and Distributed Computing Special issue on High Performance Bionformatics 63 (2003)Google Scholar
  7. 7.
    NCBI-National Cancer for Biotechnology Information. Genbank dna sequences, http://www.ncbi.nlm.nih.gov/
  8. 8.
    Research Collaboratory for Structural Bioinformatics (RCSB). The protein data bank, http://www.rcsb.org/pdb
  9. 9.
    Global Grid Forum. Life science grid - research group, http://www.ggf.org/7_APM/LSG_b.htm
  10. 10.
    Foster, I., Kesselman, C.: The Grid: Blueprint for a Future Computing Infrastructure. Morgan Kaufmann Publishers, San Francisco (1999)Google Scholar
  11. 11.
    Guerra, C., Istrail, S.: Mathematical Methods for Protein Structure Analysis and Design. LNCS (LNBI), vol. 2666. Springer, Heidelberg (2003)zbMATHCrossRefGoogle Scholar
  12. 12.
    University of Manchester. Mygrid, http://mygrid.man.ac.uk/

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Mario Cannataro
    • 1
  • Matteo Comin
    • 2
  • Carlo Ferrari
    • 2
  • Concettina Guerra
    • 2
  • Antonella Guzzo
    • 3
  • Pierangelo Veltri
    • 1
  1. 1.University of Catanzaro 
  2. 2.DEIUniversity of Padova 
  3. 3.DEISUniversity of Calabria 

Personalised recommendations