Embarrassingly Distributed and Master-Worker Paradigms on the Grid

  • J. Herrera
  • E. Huedo
  • R. S. Montero
  • I. M. Llorente
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3458)


Grids constitute a promising platform to execute loosely coupled applications, which arise naturally in many scientific and engineering fields like bioinformatics, computational fluid dynamics, particle physics, etc. In this paper, we describe our experiences in porting three scientific production codes to the Grid. Those codes follow typical computational models, namely: embarrassingly distributed and master-worker. In spite of their relatively simple computational structure, consisting of many “independent” tasks, their reliable and efficient execution on computational Grids involves several issues, due to both the dynamic nature of the Grid itself and the execution and programming requirements of the applications. The applications have been developed by using the DRMAA (Distributed Resource Management Application API) interface. DRMAA routines are supported by the functionality offered by the GridWay framework, that provides the runtime mechanisms needed for transparently executing jobs on a dynamic Grid environment. The experiments have been performed on Globus-based research testbeds that span heterogeneous resources in different institutions.


Grid Resource Grid Environment Globus Toolkit Adaptive Schedule Global Grid Forum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan-Kaufman, San Francisco (1999)Google Scholar
  2. 2.
    Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. Intl. J. Supercomputer Applications 11, 115–128 (1997)CrossRefGoogle Scholar
  3. 3.
    Schopf, J.M.: Ten Actions when Superscheduling. Technical Report WD8.5, The Global Grid Forum, Scheduling Working Group (2001)Google Scholar
  4. 4.
    Buyya, R., Abramson, D., Giddy, J.: A Computational Economy for Grid Computing and its Implementation in the Nimrod-G Resource Broker. In: Future Generation Computer Systems. Elsevier Science, Amsterdam (2002)Google Scholar
  5. 5.
    Casanova, H., Legrand, A., Zagorodnov, D., Berman, F.: Heuristics for Scheduling Parameter Sweep Applications in Grid Environments. In: Proceedings of the 9th Heterogeneous Computing workshop (HCW 2000), Cancun, Mexico (2000)Google Scholar
  6. 6.
    Allen, G., et al.: The Cactus Worm: Experiments with Dynamic Resource Discovery and Allocation in a Grid Environment. International Journal of High-Performance Computing Applications 15 (2001)Google Scholar
  7. 7.
    Huedo, E., Montero, R.S., Llorente, I.M.: A Framework for Adaptive Execution on Grids. Intl. J. Software – Practice and Experience (SPE) 34, 631–651 (2004)CrossRefGoogle Scholar
  8. 8.
    Herrera, J., Huedo, E., Montero, R.S., Llorente, I.M.: Developing Grid-Aware Applications with DRMAA on Globus-based Grids. In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds.) Euro-Par 2004. LNCS, vol. 3149, pp. 429–435. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Vadhiyar, S., Dongarra, J.: A Performance Oriented Migration Framework for the Grid. In: Proceedings of the 3rd IEEE/ACM Int’l. Symposium on Cluster Computing and the Grid, CCGrid (2003)Google Scholar
  10. 10.
    Giersch, A., Robert, Y., Vivien, F.: Scheduling Tasks Sharing Files on Heterogeneous Master-Slave Platforms. In: Proc. 12th Euromicro Conf. Parallel, Distributed and Network-based Processing (PDP 2004), pp. 364–371. IEEE CS, Los Alamitos (2004)CrossRefGoogle Scholar
  11. 11.
    Huedo, E., Montero, R.S., Llorente, I.M.: Experiences on Adaptive Grid Scheduling of Parameter Sweep Applications. In: Proc. 12th Euromicro Conf. Parallel, Distributed and Network-based Processing (PDP 2004), pp. 28–33. IEEE CS, Los Alamitos (2004)CrossRefGoogle Scholar
  12. 12.
    Medeiros, R., Cirne, W., Brasileiro, F., Sauvé, J.: Faults in Grids: Why Are They so Bad and What Can Be Done about It? In: Proc. of the 4th Intl. Workshop on Grid Computing, Grid 2003 (2003)Google Scholar
  13. 13.
    Huedo, E., Montero, R.S., Llorente, I.M.: Experiences on Grid Resource Selection Considering Resource Proximity. In: Fernández Rivera, F., Bubak, M., Gómez Tato, A., Doallo, R. (eds.) Across Grids 2003. LNCS, vol. 2970, pp. 1–8. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    van Ham, R., et al.: Reductive Genome Evolution in buchnera a phidicola. Proc. Natl. Acad. Sci. USA 100, 581–586 (2003)CrossRefGoogle Scholar
  15. 15.
    Ormö, J., Dohm, J.M., Ferris, J.C., Lepinette, A., Fairén, A.: Marine-Target Craters on Mars? An Assessment Study. Meteoritics & Planetary Science 39, 333–346 (2004)CrossRefGoogle Scholar
  16. 16.
    Gareth, S.C., Melosh, H.J.: SALES 2: A Multi-Material Extension to SALE Hydrocode with Improved Equation of State and Constitutive Model (2002), Available at
  17. 17.
    Housen, K.R., Schmidt, R.M., Holsapple, K.A.: Crater Ejecta Scaling Laws: Fundamental Forms Based on Dimensional Analysis. Journal of Geophysical Research 88, 2485–2499 (1983)CrossRefGoogle Scholar
  18. 18.
    Kang, L., Chen, Y.: Parallel Evolutionary Algorithms and Applications (1999)Google Scholar
  19. 19.
    Imade, H., Morishita, R., Ono, I., Ono, N., Okamoto, M.: A Grid-oriented Genetic Algorithm Framework for Bioinformatics. New Generation Computing 22, 177–186 (2004)zbMATHCrossRefGoogle Scholar
  20. 20.
    Cantú-Paz, E.: A Survey of Parallel Genetic Algorthms (1999)Google Scholar
  21. 21.
    Schaffer, J., Eshelman, L.: On Crossover as an Evolutionary Viable Strategy. In: Belew, R., Booker, L. (eds.) Proceedings of the 4th International Conference on Genetic Algorithms, pp. 61–68. Morgan Kaufmann, San Francisco (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • J. Herrera
    • 1
  • E. Huedo
    • 2
  • R. S. Montero
    • 1
  • I. M. Llorente
    • 1
    • 2
  1. 1.Departamento de Arquitectura de Computadores y Automática, Facultad de InformáticaUniversidad Complutense de MadridMadridSpain
  2. 2.Laboratorio de Computación Avanzada, Simulación y Aplicaciones TelemáticasCentro de Astrobiología (CSIC-INTA)Torrejón de ArdozSpain

Personalised recommendations