Active Mining pp 112-125 | Cite as

First-Order Rule Mining by Using Graphs Created from Temporal Medical Data

  • Ryutaro Ichise
  • Masayuki Numao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3430)

Abstract

In managing medical data, handling time-series data, which contain irregularities, presents the greatest difficulty. In the present paper, we propose a first-order rule discovery method for handling such data. The present method is an attempt to use graph structure to represent time-series data and reduce the graph using specified rules for inducing hypothesis. In order to evaluate the proposed method, we conducted experiments using real-world medical data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adriaans, P., Zantinge, D.: Data Mining. Addison Wesley, London (1996)Google Scholar
  2. 2.
    Baxter, R., Williams, G., He, H.: Feature Selection for Temporal Health Records. In: Cheung, D., Williams, G.J., Li, Q. (eds.) PAKDD 2001. LNCS (LNAI), vol. 2035, pp. 198–209. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Das, D., Lin, K., Mannila, H., Renganathan, G., Smyth, P.: Rule Discovery from Time Series. In: Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, pp. 16–22 (1998)Google Scholar
  4. 4.
    Džeroski, S., Lavrač, N.: Relational Data Mining. Springer, Heidelberg (2001)MATHGoogle Scholar
  5. 5.
    Gamberger, D., Lavrač, N., Krstačić, G.: Active subgroup mining: a case study in coronary heart disease risk group detection. Artificial Intelligence in Medicine 28, 27–57 (2003)CrossRefGoogle Scholar
  6. 6.
    Ichise, R., Numao, M.: Learning first-order rules to handle medical data. NII Journal 2, 9–14 (2001)Google Scholar
  7. 7.
    Keogh, E., Pazzani, M.: Scaling up Dynamic Time Warping for Datamining Applications. In: The Proceedings of the Sixth International Conference on Knowledge Discovery and Data Mining, pp. 285–289 (2000)Google Scholar
  8. 8.
    Kononenko, I.: Machine learning for medical diagnosis: history, state of the art and perspective. Artificial Intelligence in Medicine 23, 89–109 (2001)CrossRefGoogle Scholar
  9. 9.
    Motoda, H. (ed.): Active mining: new directions of data mining. Frontiers in artificial intelligence and applications, vol. 79. IOS Press, Amsterdam (2002)MATHGoogle Scholar
  10. 10.
    Muggleton, S., Firth, J.: Relational rule induction with CProgol4.4: a tutorial introduction. In: Relational Data Mining, pp. 160–188 (2001)Google Scholar
  11. 11.
    Quinlan, J.R.: Learning logical definitions from relation. Machine Learning 5(3), 239–266 (1990)Google Scholar
  12. 12.
    Rodríguez, J.J., Alonso, C.J., Bostrø"m, H.: Learning First Order Logic Time Series Classifiers: Rules and Boosting. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 299–308. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Spenke, M.: Visualization and interactive analysis of blood parameters with InfoZoom. Artificial Intelligence in Medicine 22, 159–172 (2001)CrossRefGoogle Scholar
  14. 14.
    Tsumoto, S.: Rule Discovery in Large Time-Series Medical Databases. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 23–31. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Yamada, Y., Suzuki, E., Yokoi, H., Takabayashi, K.: Classification by Time-series Decision Tree. In: Proceedings of the 17th Annual Conference of the Japanese Society for Artificial Intelligence (2003) (in Japanese, 1F5-06)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ryutaro Ichise
    • 1
  • Masayuki Numao
    • 2
  1. 1.Intelligent Systems Research DivisionNational Institute of InformaticsTokyoJapan
  2. 2.The Institute of Scientific and Industrial ResearchOsaka UniversityOsakaJapan

Personalised recommendations