Comparison of Border-to-Border Budget Based Network Admission Control and Capacity Overprovisioning

  • Ruediger Martin
  • Michael Menth
  • Joachim Charzinski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3462)

Abstract

There are two basic approaches to achieve Quality of Service (QoS) for communication networks: admission control (AC) and capacity overprovisioning (CO). CO is simple and cheaper to implement than AC but AC requires less capacity to fulfill QoS criteria since overload traffic can be blocked. There is an almost religious war between scientists working on both concepts. In this paper we try to contribute insights for this discussion by quantifying the capacity savings potential of AC under various networking conditions.

Keywords

QoS admission control capacity overprovisioning 

References

  1. 1.
    Odlyzko, A.: Data Networks are Lightly Utilized, and will Stay that Way. The Review of Network Economics 2 (2003)Google Scholar
  2. 2.
    Menth, M.: Efficient Admission Control and Routing in Resilient Communication Networks. PhD thesis, University of Würzburg, Faculty of Computer Science, Am Hubland (2004)Google Scholar
  3. 3.
    Kelly, F.P.: Notes on Effective Bandwidths. In: Stochastic Networks: Theory and Applications, vol. 4, pp. 141–168. Oxford University Press, Oxford (1996)Google Scholar
  4. 4.
    Hoogendoorn, C., Schrodi, K., Huber, M., Winkler, C., Charzinski, J.: Towards Carrier-Grade Next Generation Networks. In: ICCT, Beijing, China (2003)Google Scholar
  5. 5.
    Fraleigh, C., Tobagi, F., Diot, C.: Provisioning IP Backbone Networks to Support Latency Sensitive Traffic. In: IEEE Infocom 2003, San Francisco, USA (2003)Google Scholar
  6. 6.
    Kilkki, J., Norros, I.: Testing the Gaussian Approximation of Aggregate Traffic. In: Internet Measurement Workshop, Marseille, France (2002)Google Scholar
  7. 7.
    Van Hoey, G., De Vleeschauwer, D.: Benefit of Admission Control in Aggregation Network Dimensioning for Video Services. In: Networking 2004, Athens, Greece (2004)Google Scholar
  8. 8.
    Van den Berg, H., et al.: QoS-aware Bandwidth Provisioning for IP Network Links. Technical Report PNA-E0406, Centrum voor Wiskunde en Informatica, The Netherlands (2004)Google Scholar
  9. 9.
    Papagiannaki, D., Taft, N., Zhang, Z., Diot, C.: Long-Term Forecasting of Internet Backbone Traffic: Observations and Initial Models. In: IEEE Infocom, San Francisco, USA (2003)Google Scholar
  10. 10.
    Tuan Tran, H., Ziegler, T.: Adaptive Bandwidth Provisioning with Explicit Respect to QoS Requirements. Quality of Future Internet Services (QoFIS), Sweden (2003)Google Scholar
  11. 11.
    Paxson, V., Floyd, S.: Wide-Are Traffic: The Failure of Poisson Modelling. IEEE/ACM Transactions on Networking (1995)Google Scholar
  12. 12.
    Roberts, J.W.: Traffic Theory and the Internet. IEEE Communications Magazine 1, 94–99 (2001)CrossRefGoogle Scholar
  13. 13.
    Dinh, T., Sonkoly, B., Molnár, S.: Fractal Analysis and Modeling of VoIP Traffic. In: Proceedings of Networks 2004, Vienna, Austria, pp. 123–130 (2004)Google Scholar
  14. 14.
    Roberts, J., Mocci, U., Virtamo, J.: Broadband Network Teletraffic - Final Report of Action COST 242. Springer, Berlin (1996)Google Scholar
  15. 15.
    Ross, K.W., Tsang, D.H.K.: The Stochastik Knapsack Problem. IEEE Transactions on Communications 37, 740–747 (1989)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Xiao, X., Ni, L.M.: Internet QoS: A Big Picture. IEEE Network Magazine 13, 8–18 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ruediger Martin
    • 1
  • Michael Menth
    • 1
  • Joachim Charzinski
    • 2
  1. 1.Department of Distributed Systems, Institute of Computer ScienceUniversity of WürzburgWürzburgGermany
  2. 2.Siemens AGMunichGermany

Personalised recommendations