Describing and Simulating Internet Routes

  • Jérémie Leguay
  • Matthieu Latapy
  • Timur Friedman
  • Kavé Salamatian
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3462)


This paper introduces relevant statistics for the description of routes in the internet, seen as a graph at the interface level. Based on the observed properties, we propose and evaluate methods for generating artificial routes suitable for simulation purposes. The work in this paper is based upon a study of over seven million route traces produced by CAIDA’S skitter infrastructure.


Network measurements graphs statistical analysis modeling simulation 


  1. 1.
    Jacobsen, V.: traceroute (1989), Also see NANOG traceroute,
  2. 2.
    Paxson, V.: End-to-end routing behavior in the Internet. IEEE/ACM Trans. on Networking 5, 601–615 (1997); See also Proc. ACM SIGCOMM 1996Google Scholar
  3. 3.
    Spring, N., Mahajan, R., Anderson, T.: Quantifying the causes of path inflation. In: Proc. ACM SIGCOMM (2003)Google Scholar
  4. 4.
    Tangmunarunkit, H., Govindan, R., Shenker, S.: Internet path inflation due to policy routing. In: Proc. SPIE ITCom. (2001)Google Scholar
  5. 5.
    Tangmunarunkit, H., Govindan, R., Shenker, S., Estrin, D.: The impact of routing policy on internet paths. In: Proc. IEEE Infocom (2001)Google Scholar
  6. 6.
    Tangmunarunkit, H., Govindan, R., Jamin, S., Shenker, S., Willinger, W.: Network topology generators: Degree-based vs. structural. In: Proc. ACM SIGCOMM (2002)Google Scholar
  7. 7.
    Barford, P., Bestavros, A., Byers, J., Crovella, M.: On the marginal utility of network topology measurements. In: Proc. Internet Measurement Workshop (IMW) (2001)Google Scholar
  8. 8.
    Li, L., Alderson, D., Willinger, W., Doyle, J.: A first-principles approach to understanding the internet’s router-level topology. In: Proc. ACM SIGCOMM (2004)Google Scholar
  9. 9.
    Fall, K., Varadhan, K.: The ns manual (2003)Google Scholar
  10. 10.
    Huffaker, B., Plummer, D., Moore, D., Claffy, K.: Topology discovery by active probing. In: Proc. Symposium on Applications and the Internet, SAINT (2002)Google Scholar
  11. 11.
    CAIDA: (skitter) a tool for actively probing the Internet,
  12. 12.
    Lakhina, A., Byers, J., Crovella, M., Xie, P.: Sampling biases in IP topology measurements. In: Proc. IEEE Infocom (2003)Google Scholar
  13. 13.
    Riley, G.F., Ammar, M.H., Fujimoto, R.: Stateless routing in network simulations. In: MASCOTS, pp. 524–531 (2000)Google Scholar
  14. 14.
    Guillaume, J.L., Latapy, M.: Relevance of massively distributed explorations of the Internet: Simulation results. In: Proc. IEEE Infocom (2005)Google Scholar
  15. 15.
    Meyer, D.: University of Oregon Route Views Project,
  16. 16.
    Pansiot, J.J., Grad, D.: On routes and multicast trees in the Internet. ACM SIGCOMM Computer Communication Review 28, 41–50 (1998)CrossRefGoogle Scholar
  17. 17.
    Govindan, R., Tangmunarunkit, H.: Heuristics for internet map discovery. In: Proc. IEEE Infocom (2000) Google Scholar
  18. 18.
    Spring, N., Mahajan, R., Wetherall, D.: Measuring ISP topologies with Rocketfuel. In: Proc. ACM SIGCOMM (2002)Google Scholar
  19. 19.
    Spring, N., Dontcheva, M., Rodrig, M., Wetherall., D.: How to resolve IP aliases. Tech. Report 04-05-04. Washington Univ. Computer Sci. (2004)Google Scholar
  20. 20.
    Teixeira, R., Marzullo, K., Savage, S., Voelker, G.: In search of path diversity in ISP networks. In: Proc. Internet Measurement Conference (IMC) (2003)Google Scholar
  21. 21.
    Keys, K.: (iffinder) a tool for mapping interfaces to routers , (restricted access)
  22. 22.
    Broido, A., Claffy, K.: Internet topology: Connectivity of IP graphs. In: Proc. SPIE International Symposium on Convergence of IT and Communication (2001)Google Scholar
  23. 23.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In: Proc. ACM SIGCOMM (1999)Google Scholar
  24. 24.
    Vazquez, A., Pastor-Satorras, R., Vespignani, A.: Large-scale topological and dynamical properties of the Internet. Phys. Rev. E 65, 066130 (2002)CrossRefGoogle Scholar
  25. 25.
    Dall’Asta, L., Alvarez-Hamelin, I., Barrat, A., Vasquez, A., Vespignani, A.: A statistical approach to the traceroute-like exploration of networks: theory and simulations. In: Proc. 1st Int’l. Conf. on Combinatorial and Algorithmic Aspects of Networks, CAAN (2004)Google Scholar
  26. 26.
    Albert, R., Jeong, H., Barab´asi, A.L.: Error and attack tolerance in complex networks. Nature 406, 378–382 (2000)CrossRefGoogle Scholar
  27. 27.
    Kim, B.J., Yoon, C.N., Han, S.K., Jeong, H.: Path finding strategies in scale-free networks. Phys. Rev. E 65, 27103 (2002)CrossRefGoogle Scholar
  28. 28.
    Cohen, R., Erez, K., ben Avraham, D., Havlin, S.: Breakdown of the internet under intentional attack. Phys. Rev. Lett. 86, 3682–3685 (2001)CrossRefGoogle Scholar
  29. 29.
    Cohen, R., Erez, K., ben Avraham, D., Havlin, S.: Resilience of the internet to random breakdown. Phys. Rev. Lett. 85, 4626 (2000)CrossRefGoogle Scholar
  30. 30.
    Callaway, D., Newman, M., Strogatz, S., Watts, D.: Network robustness and fragility: Percolation on random graphs. Phys. Rev. Lett. 85, 5468–5471 (2000)CrossRefGoogle Scholar
  31. 31.
    Walsh, T.: Search in a small world. In: Proc. IJCAI (1999)Google Scholar
  32. 32.
    Bampis, E., Latapy, M., Pascual, F.: Computing short paths in scale-free networks (2004) (preprint)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jérémie Leguay
    • 1
  • Matthieu Latapy
    • 2
  • Timur Friedman
    • 1
  • Kavé Salamatian
    • 1
  1. 1.LIP6 – CNRS and Université Pierre et Marie CurieParisFrance
  2. 2.LIAFA – CNRS and Université Denis DiderotParisFrance

Personalised recommendations