Reducing Large Internet Topologies for Faster Simulations

  • V. Krishnamurthy
  • M. Faloutsos
  • M. Chrobak
  • L. Lao
  • J. -H. Cui
  • A. G. Percus
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3462)

Abstract

In this paper, we develop methods to “sample” a small realistic graph from a large real network. Despite recent activity, the modeling and generation of realistic graphs is still not a resolved issue. All previous work has attempted to grow a graph from scratch. We address the complementary problem of shrinking a graph. In more detail, this work has three parts. First, we propose a number of reduction methods that can be categorized into three classes: (a) deletion methods, (b) contraction methods, and (c) exploration methods. We prove that some of them maintain key properties of the initial graph. We implement our methods and show that we can effectively reduce the nodes of a graph by as much as 70% while maintaining its important properties. In addition, we show that our reduced graphs compare favourably against construction-based generators. Apart from its use in simulations, the problem of graph sampling is of independent interest.

References

  1. 1.
    Aiello, W., Chung, F., Lu, L.: A random graph model for massive graphs. In: STOC (2000)Google Scholar
  2. 2.
    Albert, R., Barabasi, A.: Statistical mechanics of complex networks. Review of Modern Physics (2002)Google Scholar
  3. 3.
    Barabasi, A., Albert, R.: Emergence of scaling in random networks. Science 8 (October 1999)Google Scholar
  4. 4.
    Battista, G., Patrignani, M., Pizzonia, M.: Computing the types of the relationships between autonomous systems. In: IEEE INFOCOM (2003)Google Scholar
  5. 5.
    Bu, T., Towsley, D.: On distinguishing between Internet power law topology generators. In: Infocom (2002)Google Scholar
  6. 6.
    Calvert, K., Zegura, E., Doar, M.: Modeling Internet topology. IEEE Trans on Communication, 160–163 (December 1997)Google Scholar
  7. 7.
    Chen, Q., Chang, H., Govindan, R., Jamin, S., Shenker, S.J., Willinger, W.: The origin of power laws in Internet topologies revisited. In: INFOCOM (2002)Google Scholar
  8. 8.
    Dimitropoulos, X.A., Riley, G.F.: Creating realistic BGP models. In: 11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (2003)Google Scholar
  9. 9.
    Doar, M.: A better model for generating test networks. In: Proc. Global Internet. IEEE, Los Alamitos (1996)Google Scholar
  10. 10.
    Fabrikant, A., Koutsoupias, E., Papadimitriou, C.H.: Heuristically optimized trade-offs: A new paradigm for power laws in the internet (extended abstract). In: STOC (2002)Google Scholar
  11. 11.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the Internet topology. In: ACM SIGCOMM, Cambridge MA, September 1-3, pp. 251–262 (1999)Google Scholar
  12. 12.
    National Laboratory for Applied Network Research. Online data and reports. Supported by NSF (1998), http://www.nlanr.net
  13. 13.
    Gao, L.: On inferring automonous system relationships in the Internet. In: Proc. Global Internet (November 2000)Google Scholar
  14. 14.
    Riley, G.F.: On standardized network topologies for network research. In: Simulation Conference, 2002. Proceedings of the Winter, vol. 1, pp. 664–670 (2002)Google Scholar
  15. 15.
    Gkantsidis, C., Mihail, M., Zegura, E.: Spectral analysis of Internet topologies. In: IEEE INFOCOM (2003)Google Scholar
  16. 16.
    Jin, C., Chen, Q., Jamin, S.: Inet: Internet topology generator. Techical Report UM CSETR- 433-00 (2000)Google Scholar
  17. 17.
    Karger, D.: Randomization in graph optimization problems: A survey. Optima 58, 1–11 (1998)Google Scholar
  18. 18.
    Karypis, G.: Multilevel hypergraph partitioning. Technical Report, Department of Computer Science, University of Minnesota: 02-025 (2002)Google Scholar
  19. 19.
    Karypis, G., Kumar, V.: A fast and high quality scheme for partitioning irregular graphs. Technical Report, Department of Computer Science, University of Minnesota: 95-035 (1995)Google Scholar
  20. 20.
    Krishnamurthy, V., Faloutsos, M., Chrobak, M., Lao, L., Cui, J.H., Percus, A.G.: Reducing large internet topologies for faster simulations, UC Riverside, Technical Report (2005)Google Scholar
  21. 21.
    Krishnamurthy, V., Sun, J., Faloutsos, M., Tauro, S.: Sampling internet topologies: How small can we go? In: International Conference on Internet Computing, Las Vegas (2005)Google Scholar
  22. 22.
    Subramanian, L., Agarwal, S., Rexford, J., Katz, R.: Characterizing the Internet hierarchy from multiple vantage points. In: Proc. IEEE INFOCOM (2002)Google Scholar
  23. 23.
    Medina, A., Lakhina, A., Matta, I., Byers, J.: Brite:an approach to universal topology generation. In: MASCOTS (2001)Google Scholar
  24. 24.
    Medina, A., Matta, I., Byers, J.: On the origin of powerlaws in Internet topologies. ACM SIGCOMM Computer Communication Review 30(2), 18–34 (2000)CrossRefGoogle Scholar
  25. 25.
    Mitzenmacher, M.: A brief history of generative models for power law and lognormal distributions. Internet Mathematics 1(2) (2004)Google Scholar
  26. 26.
    Palmer, C.R., Gibbons, P.B., Faloutsos, C.: Anf: A fast and scalable tool for data mining in massive graphs. In: SIGKDD (2002)Google Scholar
  27. 27.
    Riley, G.F., Ammar, M.H., Fujimoto, R.M., Perumalla, K., Xu, D.: Distributed network simulations using the dynamic simulation backplan. In: International Conference on Distributed Computing Systems 2001, ICDCS 2001 (2001)Google Scholar
  28. 28.
    Siganos, G., Faloutsos, M., Faloutsos, P., Faloutsos, C.: Power-laws of the Internet topology. IEEE/ACM Trans. on Networking (August 2003)Google Scholar
  29. 29.
    Tangmurankit, H., Govindan, R., Jamin, S., Shenker, S.J., Willinger, W.: Network topology generators: Degree-based vs structural. In: SIGCOMM (2002)Google Scholar
  30. 30.
    Waxman, B.M.: Routing of multipoint connections. IEEE Journal on Selected Areas in Communications 6(9), 1617–1622 (1988)CrossRefGoogle Scholar
  31. 31.
    Zegura, E., Calvert, K., Bhattacharjee, S.: How to model an Internetwork. In: IEEE INFOCOM (1996)Google Scholar
  32. 32.
    Zegura, E.W., Calvert, K.L., Donahoo, M.J.: A quantitative comparison of graph-based models for Internetworks. TON 5(6) (December 1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • V. Krishnamurthy
    • 1
  • M. Faloutsos
    • 1
  • M. Chrobak
    • 1
  • L. Lao
    • 2
  • J. -H. Cui
    • 3
  • A. G. Percus
    • 4
  1. 1.U.C. Riverside 
  2. 2.UCLA 
  3. 3.U. Connecticut 
  4. 4.Los Alamos National Labs and UCLA IPAM 

Personalised recommendations