Advertisement

On Sorting by Translocations

  • Anne Bergeron
  • Julia Mixtacki
  • Jens Stoye
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3500)

Abstract

The study of genome rearrangements is an important tool in comparative genomics. This paper revisits the problem of sorting a multichromosomal genome by translocations, i.e. exchanges of chromosome ends. We give an elementary proof of the formula for computing the translocation distance in linear time, and we give a new algorithm for sorting by translocations, correcting an error in a previous algorithm by Hannenhalli.

Keywords

Genome Rearrangement Black Point White Point Distance Formula Distance Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergeron, A., Mixtacki, J., Stoye, J.: Reversal distance without hurdles and fortresses. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 388–399. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Bergeron, A., Mixtacki, J., Stoye, J.: The inversion distance problem. In: Gascuel, O. (ed.) Mathematics of Evolution and Phylogeny, ch. 10, pp. 262–290. Oxford University Press, Oxford (2005)Google Scholar
  3. 3.
    Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its applications to genome comparison. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 68–79. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002)Google Scholar
  5. 5.
    Hannenhalli, S.: Polynomial-time algorithm for computing translocation distance between genomes. Discrete Appl. Math. 71(1-3), 137–151 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hannenhalli, S., Pevzner, P.A.: Transforming men into mice, polynomial algorithm for genomic distance problem. In: FOCS 1995 Proceedings, pp. 581–592. IEEE Press, Los Alamitos (1995)Google Scholar
  7. 7.
    Kececioglu, J.D., Ravi, R.: Of mice and men: Algorithms for evolutionary distances between genomes with translocation. In: Proceedings of the sixth ACM-SIAM Symposium on Discrete Algorithm. pp. 604–613. Society of Industrial and Applied Mathematics (1995)Google Scholar
  8. 8.
    Li, G., Qi, X., Wang, X., Zhu, B.: A linear-time algorithm for computing translocation distance between signed genomes. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 323–332. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Ozery-Flato, M., Shamir, R.: Two notes on genome rearrangements. J. Bioinf. Comput. Biol. 1(1), 71–94 (2003)CrossRefGoogle Scholar
  10. 10.
    Tesler, G.: Efficient algorithms for multichromosomal genome rearrangements. J. Comput. Syst. Sci. 65(3), 587–609 (2002)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Anne Bergeron
    • 1
  • Julia Mixtacki
    • 2
  • Jens Stoye
    • 3
  1. 1.LaCIMUniversité du Québec à MontréalCanada
  2. 2.Fakultät für MathematikUniversität BielefeldBielefeldGermany
  3. 3.Technische FakultätUniversität BielefeldBielefeldGermany

Personalised recommendations