The Factor Graph Network Model for Biological Systems

  • Irit Gat-Viks
  • Amos Tanay
  • Daniela Raijman
  • Ron Shamir
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3500)

Abstract

We introduce an extended computational framework for studying biological systems. Our approach combines formalization of existing qualitative models that are in wide but informal use today, with probabilistic modeling and integration of high throughput experimental data. Using our methods, it is possible to interpret genomewide measurements in the context of prior knowledge on the system, to assign statistical meaning to the accuracy of such knowledge and to learn refined models with improved fit to the experiments. Our model is represented as a probabilistic factor graph and the framework accommodates partial measurements of diverse biological elements. We develop methods for inference and learning in the model. We compare the performance of standard inference algorithms and tailor-made ones and show that hidden variables can be reliably inferred even in the presence of feedback loops and complex logic. We develop a formulation for the learning problem in our model which is based on deterministic hypothesis testing, and show how to derive p-values for learned model features. We test our methodology and algorithms on both simulated and real yeast data. In particular, we use our method to study the response of S. cerevisiae to hyper-osmotic shock, and explore uncharacterized logical relations between important regulators in the system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bar-Joseph, Z., Gerber, G.K., Lee, T.I., Rinaldi, N.J., Yoo, J.Y., Robert, F., Gordon, D.B., Fraenkel, E., Jaakkola, T.S., Young, R.A., Gifford, D.K.: Computational discovery of gene modules and regulatory networks. Nature Biotechnology 21, 1337–1342 (2003)CrossRefGoogle Scholar
  2. 2.
    Beer, M.A., Tavazoie, S.: Predicting gene expression from sequence. Cell 117, 185–198 (2004)CrossRefGoogle Scholar
  3. 3.
    Chen, K.C., et al.: Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol. Biol. Cell 11, 369–391 (2000)Google Scholar
  4. 4.
    Cooper, G.: The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence 42, 393–405 (1990)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Covert, M.W., Knight, E.M., Reed, J.L., Herrgard, M.J., Palsson, B.O.: Integrating high-throughput and computational data elucidates bacterial networks. Nature 429, 92–96 (2004)CrossRefGoogle Scholar
  6. 6.
    Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. J. Comp. Biol. 7, 601–620 (2000)CrossRefGoogle Scholar
  7. 7.
    Friedman, N., Murphy, K., Russell, S.: Learning the structure of dynamic probabilistic networks. In: Proc. 14th Conference on Uncertainty in Artificial Intelligence, pp. 139–147 (1998)Google Scholar
  8. 8.
    Gat-Viks, I., Tanay, A., Shamir, R.: Modeling and analysis of heterogeneous regulation in biological networks. In: Eskin, E., Workman, C. (eds.) RECOMB-WS 2004. LNCS (LNBI), vol. 3318, pp. 98–113. Springer, Heidelberg (2005); Also J. Comput. Biol. (in press)CrossRefGoogle Scholar
  9. 9.
    Hartemink, A., Gifford, D., Jaakkola, T., Young, R.: Combining location and expression data for principled discovery of genetic regulatory networks. In: Proceedings of the 2002 Pacific Symposioum in Biocomputing (PSB 2002), pp. 437–449 (2002)Google Scholar
  10. 10.
    Hohmann, S.: Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66(2), 300–372 (2002)CrossRefGoogle Scholar
  11. 11.
    Imoto, S., Higuchi, T., Goto, T., Tashiro, K., Kuhara, S., Miyano, S.: Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks. J. Bioinform. Comput. Biol. 2, 77–98 (2004)CrossRefGoogle Scholar
  12. 12.
    Imoto, S., Kim, S., Goto, T., Aburatani, S., Tashiro, K., Kuhara, S., Miyano, S.: Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network. J. Bioinform. Comput. Biol. 1, 231–252 (2004)CrossRefGoogle Scholar
  13. 13.
    Jaakkola, T.S.: Tutorial on variational approximation methods. In: Saad, D., Opper, M. (eds.) Advanced Mean Field Methods - Theory and Practice, pp. 129–160. MIT Press, Cambridge (2001)Google Scholar
  14. 14.
    Kschischang, F.R., Frey, B.J., Loeliger, H.: Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory 47, 498–519 (2001)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    MacKay, D.J.C.: Introduction to Monte Carlo methods. In: Jordan, M.I. (ed.) Learning in Graphical Models, pp. 175–204. Kluwer Academic Press, Dordrecht (1998)Google Scholar
  16. 16.
    Nachman, I., Regev, A., Friedman, N.: Inferring quantitative models of regulatory networks from expression data. Bioinformatics 20, 248–256 (2004)CrossRefGoogle Scholar
  17. 17.
    O’Rourke, S.M., Herskowitz, I.: Unique and redundant roles for hog mapk pathway components as revealed by whole-genome expression analysis. Mol. Biol. Cell. 15(2), 532–542 (2004)CrossRefGoogle Scholar
  18. 18.
    Pearl, J.: Probabilistic Reasoning in intelligent systems. Morgan Kaufmann publishers, Inc., San Francisco (1988)Google Scholar
  19. 19.
    Proft, M., Serrano, R.: Repressors and upstream repressing sequences of the stress-regulated ena1 gene in saccharomyces cerevisiae: bzip protein sko1p confers hog-dependent osmotic regulation. Mol. Biol. Cell. 19, 537–546 (1999)Google Scholar
  20. 20.
    Rep, M., Krantz, M., Thevelein, J.M., Hohmann, S.: The transcriptional response of saccharomyces cerevisiae to osmotic shock. hot1p and msn2p/msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J. Biol. Chem. 275, 8290–8300 (2000)CrossRefGoogle Scholar
  21. 21.
    Rep, M., Reiser, V., Holzmller, U., Thevelein, J.M., Hohmann, S., Ammerer, G., Ruis, H.: Osmotic stress-induced gene expression in saccharomyces cerevisiae requires msn1p and the novel nuclear factor hot1p. Mol. Cell. Biol. 19, 5474–5485 (1999)Google Scholar
  22. 22.
    Ronen, M., Rosenberg, R., Shraiman, B., Alon, U.: Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics. Proceedings of the National Academy of Science USA 99, 10555–10560 (2002)CrossRefGoogle Scholar
  23. 23.
    Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D., Friedman, N.: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 34(2), 166–176 (2003)CrossRefGoogle Scholar
  24. 24.
    Smith, V.A., Jarvis, E.D., Hartemink, A.J.: Evaluating functional network inference using simulations of complex biological systems. Bioinformatics 18, 216–224 (2002)Google Scholar
  25. 25.
    Tanay, A., Shamir, R.: Computational expansion of genetic networks. Bioinformatics 17, S270–S278 (2001)Google Scholar
  26. 26.
    Tanay, A., Shamir, R.: Modeling transcription programs: inferring binding site activity and dose-response model optimization. J. Comp. Biol. 11, 357–375 (2004)CrossRefGoogle Scholar
  27. 27.
    Yeang, C.H., Ideker, T., Jaakkola, T.: Physical network models. J. Comput. Biol. 11(2-3), 243–262 (2004)CrossRefGoogle Scholar
  28. 28.
    Yedidia, S., Freeman, W.T., Weiss, Y.: Constructing free energy approximations and generalized belief propagation algorithms. Technical Report TR-2004-040, Mitsubishi electric resaerch laboratories (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Irit Gat-Viks
    • 1
  • Amos Tanay
    • 1
  • Daniela Raijman
    • 1
  • Ron Shamir
    • 1
  1. 1.School of Computer ScienceTel-Aviv UniversityTel-AvivIsrael

Personalised recommendations