GET: The Connection Between Monogenic Scale-Space and Gaussian Derivatives

  • Michael Felsberg
  • Ullrich Köthe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3459)


In this paper we propose a new operator which combines advantages of monogenic scale-space and Gaussian scale-space, of the monogenic signal and the structure tensor. The gradient energy tensor (GET) defined in this paper is based on Gaussian derivatives up to third order using different scales. These filters are commonly available, separable, and have an optimal uncertainty. The response of this new operator can be used like the monogenic signal to estimate the local amplitude, the local phase, and the local orientation of an image, but it also allows to measure the coherence of image regions as in the case of the structure tensor. Both theoretically and in experiments the new approach compares favourably with existing methods.


Energy Operator Local Orientation Structure Tensor Local Phase Energy Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Felsberg, M., Sommer, G.: The monogenic scale-space: A unifying approach to phase-based image processing in scale-space. JMIV 21, 5–26 (2004)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Koenderink, J.J.: The structure of images. Biol. Cybernetics 50, 363–370 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Mechler, F., Reich, D.S., Victor, J.D.: Detection and discrimination of relative spatial phase by V1 neurons. Journal of Neuroscience 22, 6129–6157 (2002)Google Scholar
  4. 4.
    Oppenheim, A., Lim, J.: The importance of phase in signals. Proc. of the IEEE 69, 529–541 (1981)CrossRefGoogle Scholar
  5. 5.
    Hurt, N.E.: Phase Retrieval and Zero Crossings. Kluwer Academic, Dordrecht (1989)zbMATHGoogle Scholar
  6. 6.
    Felsberg, M., Sommer, G.: The monogenic signal. IEEE Transactions on Signal Processing 49, 3136–3144 (2001)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Krieger, G., Zetzsche, C.: Nonlinear image operators for the evaluation of local intrinsic dimensionality. IEEE Trans. on Image Processing 5, 1026–1041 (1996)CrossRefGoogle Scholar
  8. 8.
    Granlund, G.H., Knutsson, H.: Signal Processing for Computer Vision. Kluwer Academic Publishers, Dordrecht (1995)Google Scholar
  9. 9.
    Felsberg, M.: On the design of two-dimensional polar separable filters. In: 12th European Signal Processing Conference, Vienna, Austria (2004)Google Scholar
  10. 10.
    Felsberg, M.: Low-Level Image Processing with the Structure Multivector. PhD thesis, Christian-Albrechts-University of Kiel, TR no. 0203 (2002)Google Scholar
  11. 11.
    Felsberg, M., Duits, R., Florack, L.: The monogenic scale space on a rectangular domain and its features. IJCV (2004); accepted publ. in future issueGoogle Scholar
  12. 12.
    Maragos, P., Bovik, A.C., Quartieri, J.F.: A multi-dimensional energy operator for image processing. In: SPIE Conference on Visual Communications and Image Processing, Boston, MA, pp. 177–186 (1992)Google Scholar
  13. 13.
    Felsberg, M., Granlund, G.: POI detection using channel clustering and the 2D energy tensor. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 103–110. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: ISPRS Intercommission Workshop, Interlaken, pp. 149–155 (1987)Google Scholar
  15. 15.
    Bigün, J., Granlund, G.H.: Optimal orientation detection of linear symmetry. In: Proc. IEEE First International Conference on Computer Vision, pp. 433–438 (1987)Google Scholar
  16. 16.
    Nordberg, K.: Signal Representation and Processing using Operator Groups. PhD thesis, Linköping University (1995), Dissertation No 366, ISBN 91-7871-476-1Google Scholar
  17. 17.
    Bigün, J., Granlund, G.H., Wiklund, J.: Multidimensional orientation estimation with applications to texture analysis and optical flow. PAMI 13, 775–790 (1991)Google Scholar
  18. 18.
    Larkin, K.G., Oldfield, M.A., Bone, D.J.: Demodulation and phase estimation of two-dimensional patterns. Australian patent AU 200110005 A1 (2001)Google Scholar
  19. 19.
    Jähne, B.: Digitale Bildverarbeitung. Springer, Berlin (1997)Google Scholar
  20. 20.
    Harris, C.G., Stephens, M.: A combined corner and edge detector. In: 4th Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  21. 21.
    Florack, L., Duits, R.: Regularity classes for locally orderless images. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 255–265. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Köthe, U., Felsberg, M.: Riesz-transforms vs. derivatives: on the relationship between the boundary tensor and the energy tensor. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 179–191. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Knutsson, H., Andersson, M.: Robust N-dimensional orientation estimation using quadrature filters and tensor whitening. In: Proceedings of IEEE International Conference on Acoustics, Speech, & Signal Processing, Adelaide, Australia (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Michael Felsberg
    • 1
  • Ullrich Köthe
    • 2
  1. 1.Computer Vision LaboratoryLinköping UniversityLinköpingSweden
  2. 2.Cognitive Systems GroupUniversity of HamburgHamburgGermany

Personalised recommendations