Numerical Integration of the Differential Riccati Equation: A High Performance Computing Approach

  • Enrique Arias
  • Vicente Hernández
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3402)


This paper presents a High Performance Computing Approach (HPC) to the code appeared in [1] called DRESOL, for the Numerical Integration of the Differential Riccati Equation. This equation arises in the application of quadratic optimization for motion control to the feedback control of robotic manipulators. In this paper the main changes carried out in the DRESOL package and the new block oriented subroutines for computing the Sylvester and Lyapunov equations in order to obtain a sequential HPC implementation are described. From this new sequential implementation parallel algorithms for distributed memory platforms have been also carried out.


Numerical Methods Parallel Computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dieci, L.: Numerical Integration of the diferential Riccati equation and some related issues. SIAM J. on Mumerical Anaysis 29(3), 781–815 (1992)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Isidori, A.: Nonlinear Control Systems: An Introduction. Springer, Heidelberg (1989)Google Scholar
  3. 3.
    Spong, M.W., Vidyasagar, M.: Robot dynamics and control. John Whiley and Sons, West Sussex (1989)Google Scholar
  4. 4.
    Slotine, J.J., Li, W.: Applied Nonlinear Control. PrenticeHall, Englewood Cliffs (1984)Google Scholar
  5. 5.
    Astrom, K.J., Wittenmark, B.: Computer-Controlled Systems: Theory and Design. Prentice-Hall, Upper Saddle River (1997)Google Scholar
  6. 6.
    Kenney, C.S., Leipnik, R.B.: Numerical Integration of the Differential Matrix Riccati Equation. IEEE Transactions on Automatic Control, 962–979 (1985)Google Scholar
  7. 7.
    Choi, C.H.: A survey of numerical methods for solving matrix Riccati differential equations. In: Proceedings of Southeastcon 1990, pp. 696–700 (1990)Google Scholar
  8. 8.
    Lainiotis, D.G.: Partitioned Riccati solutions and integration-free doubling algorithms. IEEE Trans. on Automatic Control 21, 677–689 (1976)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Leipnik, R.B.: A canonical form and solution for the matrix Riccati differential equation. Bull Australian Math. Soc. 26, 261–355 (1985)MathSciNetGoogle Scholar
  10. 10.
    Davison, E.J., Maki, M.C.: The numerical solution of the matrix Riccati differential equation. IEEE Trans. on Automatic Control 18, 71–73 (1973)MATHCrossRefGoogle Scholar
  11. 11.
    Rand, D.W., Winternitz, P.: Nonlinear Superposition Principles: a new numerical method for solvinf matrix Riccati equations. Comp. Phys. Commun. 33, 305–328 (1984)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Sorine, M., Winternitz, P.: Superposition laws for the solution of differential Riccati equations. IEEE Trans. on Automatic Control 30, 266–272 (1985)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Choi, C.H., Laub, A.J.: Efficient Matrix-Valued Algorithms for Solving Stiff Riccati Differential Equations. IEEE Trans. on Automatic Control 35(7), 770–776 (1990)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hindmarsh, A.C.: Brief Description of ODEPACK – A Systematized Collection of ODE Solvers,
  15. 15.
    Kang, F., Meng-zhao, Q.: The sumplectic methods for the computation of Hamiltonian equations. In: Proceedings of the 1st Chinese Conference for Numerical Methods for PDE’s, pp. 1–37 (1987)Google Scholar
  16. 16.
    Sanz-Serna, J.M.: Symplectic integrators for Hamiltonian Problems: an overview. Acta Numerica 1, 243–286 (1992)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Iserles, A., Norsett, S.P.: On the solution of linear differential equations in Lie groups. Technical report, Cambrigde University (1997)Google Scholar
  18. 18.
    Schiff, J., Shnider, S.: A natural approach to the numerical integration of riccati differential equations. SIAM 36(5), 1392–1413 (1999)MATHMathSciNetGoogle Scholar
  19. 19.
    Bartels, R.H., Stewart, G.W.: Solution of the Matrix Equation AX+XB = C: Algorithm 432. CACM 15, 820–826 (1972)Google Scholar
  20. 20.
    Dongarra, J., Du Croz, J., Hammarling, S., Hanson, R.J.: An Extended Set of FORTRAN Basic Linear Algebra Subroutines. ACM Trans. Math. Software (1988),
  21. 21.
    Anderson, E., et al.: LAPACK Users’ Guide. SIAM, Philadelphia (1994), Google Scholar
  22. 22.
    Choi, J., Dongarra, J., Ostrouchov, S., Petitet, A., Walker, D.: A Proposal for a Set of Parallel Basic Linear Algebra Subprograms, Department of Computer Science, University of Tennessee, Technical Report UT-CS- 95-292 (May 1995)Google Scholar
  23. 23.
    Blackford, et al.: ScaLAPACK Users’ Guide. SIAM, Philadelphia (1997)MATHCrossRefGoogle Scholar
  24. 24.
    Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with the Message-Passing Interface. MIT Press, Cambridge (1994)Google Scholar
  25. 25.
    Smith, B.T., et al.: Matrix Eigensystems Routines - EISPACK Guide. ASIACRYPT 2000. LNCS. Springer, Heidelberg (1976)Google Scholar
  26. 26.
    High Performance Networking and Computing Group (GRYCAP),

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Enrique Arias
    • 1
  • Vicente Hernández
    • 2
  1. 1.Departamento de InformáticaUniversidad Castilla-La ManchaAlbaceteSpain
  2. 2.Departamento de Sistemas Informátios y ComputaciónUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations