Advertisement

Parallel Boundary Elements: A Portable 3-D Elastostatic Implementation for Shared Memory Systems

  • Manoel T. F. Cunha
  • J. C. F. Telles
  • Alvaro L. G. A. Coutinho
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3402)

Abstract

This paper presents the parallel implementation of a computer program for the solution of three-dimensional elastostatic problems using the Boundary Element Method (BEM). The Fortran code is written for shared memory systems using standard and portable libraries: OpenMP and LAPACK. The implementation process provides guidelines to develop highly portable parallel BEM programs, applicable to many engineering problems. Numerical experiments performed in the solution of a real-life problem on a SGI Origin 2000, a Cray SV1ex and a NEC SX-6 show the effectiveness of the proposed approach.

Keywords

Boundary Element Boundary Element Method Shared Memory Internal Point Quadratic Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Symm, G.T.: Boundary Elements on a Distributed Array Processor. Engineering Analysis with Boundary Elements 1/3, 162–165 (1984)CrossRefGoogle Scholar
  2. 2.
    Davies, A.J.: The Boundary Element Method on the ICL DAP. Parallel Computing 8(1-3), 335–343 (1988)zbMATHCrossRefGoogle Scholar
  3. 3.
    Brebbia, C.A., Telles, J.C.F., Wrobel, L.C.: Boundary Elements Techniques: Theory and Applications in Engineering. Springer, Heidelberg (1984)Google Scholar
  4. 4.
    Telles, J.C.F.: The Boundary Element Method Applied to Inelastic Problems. Springer, Heidelberg (1983)zbMATHGoogle Scholar
  5. 5.
    Davies, A.J.: Fine-grained Parallel Boundary Elements. Engineering Analysis with Boundary Elements 19, 13–16 (1997)CrossRefGoogle Scholar
  6. 6.
    Gomez, J.E., Power, H.: A Multipole Direct and Indirect BEM for 2D Cavity Flow at Low Reynolds Number. Engineering Analysis with Boundary Elements 19, 17–31 (1997)CrossRefGoogle Scholar
  7. 7.
    Dongarra, J.J.: High Performance Computing Trends, the Grid, and Numerical Algorithms. In: 14th Symposium on Computer Architecture and High Performance Computing. IEEE Computer Society, Washington (2002)Google Scholar
  8. 8.
    Cunha, M.T.F.: A Practical Approach in the Development of Engineering Applications to the Internet Using Object Oriented Programming. Universidade Federal do Paraná, Curitiba-Brazil (1999)Google Scholar
  9. 9.
    Anderson, E., et al.: LAPACK User’s Guide, 3rd edn. SIAM, Philadelphia (1999)zbMATHCrossRefGoogle Scholar
  10. 10.
    Chandra, R., et al.: Parallel Programming in OpenMP. Academic Press, London (2001)Google Scholar
  11. 11.
    Tang, W., Telles, J.F.C., Brebbia, C.A.: Some Subroutines for Simple and Efficient Input Data Reading for Multipurpose Pre-processors. Microsoftware for Engineers. Computational Mechanics Publications 2/4, 209–214 (1986)Google Scholar
  12. 12.
    Telles, J.F.C.: A Self-adaptative Coordinate Transformation for Efficient Numerical Evaluation of General Boundary Integrals. International Journal for Numerical Methods in Engineering 24, 959–973 (1987)zbMATHCrossRefGoogle Scholar
  13. 13.
    Telles, J.F.C.: A Self-adaptative Coordinate Transformation for Efficient Numerical Evaluation of General Boundary Integrals, Discussion. International Journal for Numerical Methods in Engineering 26, 1683–1684 (1988)CrossRefGoogle Scholar
  14. 14.
    Franco, J.A.M., et al.: Design Aspects of the Underground Structures of the Serra da Mesa Hydroeletric Power Plant. Int. J. Rock Mech. and Min. Sci. 34(3-4), 763–771 (1997)Google Scholar
  15. 15.
    Blackford, L.S., et al.: ScaLAPACK User’s Guide. SIAM, Philadelphia (1987)Google Scholar
  16. 16.
    SGI: Origin 2000 and Onyx2 Performance Tuning and Optimization Guide. Silicon Graphics Inc., Document 007-3430-002 (2000)Google Scholar
  17. 17.
    Barra, L.P.S., et al.: Iterative Solution of BEM Equations by GMRES Algorithm. Computer and Structures 6(24), 1249–1253 (1992)CrossRefGoogle Scholar
  18. 18.
    Kreienmeyer, M., Stein, E.: Efficient Parallel Solvers for Boundary Element Equations Using Data Decomposition. Engineering Analysis with Boundary Elements 19, 33–39 (1997)CrossRefGoogle Scholar
  19. 19.
    Cunha, M.T.F., Telles, J.C.F., Coutinho, A.L.G.A.: On the parallelization of boundary element codes using standard and portable libraries. Engineering Analysis with Boundary Elements 28(7), 893–902 (2004)zbMATHCrossRefGoogle Scholar
  20. 20.
    Cunha, M.T.F., Telles, J.C.F., Coutinho, A.L.G.A.: A Portable Implementation of a Boundary Element Elastostatic Code for Shared and Distributed Memory Systems. Advances in Engineering Software 37(7), 453–460 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Manoel T. F. Cunha
    • 1
  • J. C. F. Telles
    • 1
  • Alvaro L. G. A. Coutinho
    • 1
  1. 1.Universidade Federal do Rio de Janeiro – COPPE / PECRio de JaneiroBrasil

Personalised recommendations