FPGA Implementations of the RNR Cellular Automata to Model Electrostatic Field

  • Joaquín Cerdá-Boluda
  • Oscar Amoraga-Lechiguero
  • Ruben Torres-Curado
  • Rafael Gadea-Gironés
  • Angel Sebastià-Cortés
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3402)

Abstract

The classic way to describe electrostatic field is using Partial Differential Equations and suitable boundary conditions. In most situations we need numerical methods mainly based on discretisation of time and space. In this paper we follow a different approach: we introduce RNR Cellular Automata that is capable of modeling the electrostatic field at macroscopic level. Iterations of the automata are averaged on time and space to get continuous variables. We implement RNR Cellular Automata with FPGA and compare the performance with the results using classic sequential programming. We get some regular architectures specially adapted to fully-parallel machines, and explore its benefits and drawbacks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wolfram, S.: Statistical mechanics of cellular automata. Reviews of Modern Physics 55, 601–644 (1983)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Toffoli, T.: Occam, Turing, von Neumann, Jaynes: How much can you get for how little? (A conceptual introduction to cellular automata). The Interjournal (October 1994)Google Scholar
  3. 3.
    Wolfram, S.: A New Kind of Science. Wolfram media, Champaign (2002)MATHGoogle Scholar
  4. 4.
    Margolus, N.: Physics-Like models of computation. Physica 10D, 81–95 (1984)Google Scholar
  5. 5.
    Toffoli, T.: Cellular Automata as an alternative to (rather than an approximation of) Differential Equations in Modeling Physics. Physica 10D, 117–127 (1984)Google Scholar
  6. 6.
    Smith, M.A.: Cellular Automata Methods in Mathematical Physics. Ph.D. Thesis. MIT Department of Physics (May 1994)Google Scholar
  7. 7.
    Sarkar, P.: A brief history of cellular automata. ACM Computing Surveys 32(1), 80–107 (2000)CrossRefGoogle Scholar
  8. 8.
    Shackleford, B., Tanaka, M., Carter, R.J., Snider, G.: FPGA Implementation of Neighborhood-of-Four Cellular Automata Random Number Generators. In: Proceedings of FPGA 2002, pp. 106–112 (2002)Google Scholar
  9. 9.
    Levich, B.G.: Curso de Física teórica. Volumen I: Teoría del campo electromagnético y teoría de la relatividad. Reverté (1974)Google Scholar
  10. 10.
    Gerald, C.F., Wheatley, P.O.: Applied Numerical Analysis, 6th edn. Addison Wesley Longman, Amsterdam (1999)Google Scholar
  11. 11.
    Cerdá-Boluda, J.: Arquitecturas VLSI de Autómatas Celulares para Modelado Físico. Ph.D Thesis. UPV Electronic Engineering Dept. (to be published)Google Scholar
  12. 12.
    Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (1999)Google Scholar
  13. 13.
    Marsaglia, G.: DIEHARD (1996), http://stat.fsu.edu/~geo/diehard.html
  14. 14.
    Jaquenod, G., De Giusti, M.R.: Performance y uso de recursos de contadores basados en Linear Feedback Shift Registers (LFSRs). In: VIII Workshop IBERCHIP, Guadalajara, México (2002)Google Scholar
  15. 15.
    Chew, W.C., Jin, J.M., Lu, C.C., Michielssen, E., Song, J.M.: Fast Solution Methods in Electromagnetics. IEEE Transactions on Antennas and Propagation 45(3), 523–533 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Joaquín Cerdá-Boluda
    • 1
  • Oscar Amoraga-Lechiguero
    • 2
  • Ruben Torres-Curado
    • 2
  • Rafael Gadea-Gironés
    • 1
  • Angel Sebastià-Cortés
    • 1
  1. 1.Group of Digital Systems Design, Dept, Of Electronic EngineeringUniversidad Politécnica de ValenciaValenciaSpain
  2. 2.Telecommunication SchoolUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations