Advertisement

Quantum Foam and Quantum Gravity Phenomenology

  • Y. Jack Ng
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 669)

Abstract

Our understanding of spacetime has undergone some major changes in the last hundred years. Before last century, spacetime was regarded as nothing more than a passive and static arena in which events took place. Early last century, Einstein's general relativity changed that viewpoint and promoted spacetime to an active and dynamical entity. Nowadays, many physicists also believe that spacetime, like all matter and energy, undergoes quantum fluctuations. Following John Wheeler, many of us think that space is composed of an everchanging arrangement of bubbles called spacetime foam, a.k.a. quantum foam. To understand the terminology, let us follow Wheeler and consider the following simplified analogy which he gave in a gravity conference at the University of North Carolina in 1957. Imagine yourself flying an airplane over an ocean. At high altitude the ocean appears smooth. But as you descend, it begins to show roughness. Close enough to the ocean surface, you see bubbles and foam. Analogously, spacetime appears smooth on a large scale, but on sufficiently small scales, it will appear rough and foamy, hence the term “spacetime foam.” Many physicists believe the foaminess is due to quantum fluctuations of spacetime, hence the alternative term “quantum foam.” If spacetime indeed undergoes quantum fluctuations, the fluctuations will show up when we measure a distance (or a time duration), in the form of uncertainties in the measurement. Conversely, if in any distance (or time duration) measurement, we cannot measure the distance (or time duration) precisely, we interpret this intrinsic limitation to spacetime measurements as resulting from fluctuations of spacetime itself.

Keywords

Black Hole Quantum Gravity Cube Root Planck Length Small Cube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y.J. Ng, gr-qc/0305019, Mod. Phys. Lett. A18,1073 (2003).Google Scholar
  2. 2.
    G. Amelino-Camelia, Y.J. Ng, H. van Dam, gr-qc/0204077, Astropart. Phys. 19, 729 (2003).CrossRefGoogle Scholar
  3. 3.
    E.P. Wigner, Rev. Mod. Phys. 29, 255 (1957); H. Salecker and E.P. Wigner, Phys. Rev. 109, 571 (1958).Google Scholar
  4. 4.
    Y.J. Ng and H. van Dam, Mod. Phys. Lett. A9, 335 (1994); A10, 2801 (1995); in hep-th/9406110, Proc. of Fundamental Problems in Quantum Theory, eds. D.M. Greenberger and A. Zeilinger, Ann. New York Acad. Sci. 755, 579 (1995). Also see F. Karolyhazy, Nuovo Cimento A42, 390 (1966); T. Padmanabhan, Class. Quan. Grav. 4, L107 (1987); D.V. Ahluwalia, Phys. Lett. B339, 301 (1994); L.J. Garay, Int. J. Mod. Phys. A10, 145 (1995); and N. Sasakura, Prog. Theor. Phys. 102, 169 (1999).Google Scholar
  5. 5.
    L.H. Ford, Phys. Rev. D51, 1692 (1995).Google Scholar
  6. 6.
    L. Diosi and B. Lukas, Europhys. Lett. 34, 479 (1996).CrossRefGoogle Scholar
  7. 7.
    Y.J. Ng and H. van Dam, Europhys. Lett. 38, 401 (1997); gr-qc/0209021, Class. Quant. Grav. 20, 393 (2003). See also the second reference in [8].Google Scholar
  8. 8.
    Y.J. Ng and H. van Dam, gr-qc/9906003, Found. Phys. 30, 795 (2000); gr-qc/9911054, Phys. Lett. B477, 429 (2000).Google Scholar
  9. 9.
    Y.J. Ng, gr-qc/0201022, Int. J. Mod. Phys. D11, 1585 (2002).Google Scholar
  10. 10.
    G. ';t Hooft, in Salamfestschrift, edited by A. Ali et al. (World Scientific, Singapore, 1993), p. 284; L. Susskind, J. Math. Phys. (N.Y.) 36, 6377 (1995). Also see J.A. Wheeler, Int. J. Theor. Phys. 21, 557 (1982); J.D. Bekenstein, Phys. Rev. D7, 2333 (1973); S. Hawking, Comm. Math. Phys. 43, 199 (1975).Google Scholar
  11. 11.
    F. Scardigli and R. Casadio, hep-th/0307174, Class. Quant. Grav. 20, 3915 (2003).CrossRefGoogle Scholar
  12. 12.
    G. Amelino-Camelia, Nature 398, 216 (1999).CrossRefGoogle Scholar
  13. 13.
    L. Diosi and B. Lukacs, Phys. Lett. A142, 331 (1989).Google Scholar
  14. 14.
    C.W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973), 1190.Google Scholar
  15. 15.
    Y.J. Ng, W. Christiansen, and H. van Dam, astro-ph/0302372, Astrophys. J. 591, L87 (2003).CrossRefGoogle Scholar
  16. 16.
    Y.J. Ng, gr-qc/0006105, Phys. Rev. Lett. 86, 2946 (2001), and (erratum) ibid 88, 139902-1 (2002); Y. J. Ng in hep-th/0010234, Proc. of OCPA 2000, eds. N.P. Chang et al. (World Scientific, Singapore, 2002), p. 235.Google Scholar
  17. 17.
    J.D. Barrow, Phys. Rev. D54, 6563 (1996).Google Scholar
  18. 18.
    N. Margolus and L.B. Levitin, Physica D120, 188 (1998).Google Scholar
  19. 19.
    S. Lloyd, Nature (London) 406, 1047 (2000).CrossRefGoogle Scholar
  20. 20.
    R.C. Myers and M.J. Perry, Ann. Phys. 172, 304 (1986).CrossRefGoogle Scholar
  21. 21.
    G. Amelino-Camelia, J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, and S. Sarkar, Nature 393, 763 (1998); B.E. Schaefer, Phys. Rev. Lett. 82, 4964 (1999); S.D. Biller et al., ibid, 83, 2108 (1999).Google Scholar
  22. 22.
    Y.J. Ng, D.S. Lee, M.C. Oh, and H. van Dam, Phys. Lett. B507, 236 (2001); hep-ph/0010152 and references therein. The arXiv preprint is a more informative version of the paper in Phys. Lett. B.Google Scholar
  23. 23.
    R. Lieu and L.W. Hillman, astro-ph/0301184, Astrophys. J. 585, L77 (2003).CrossRefGoogle Scholar
  24. 24.
    R. Ragazzoni, M. Turatto, and W. Gaessler, astro-ph/0303043, Astrophys. J. 587, L1 (2003).CrossRefGoogle Scholar
  25. 25.
    E.S. Perlman, et al., 2002, Astro. J. 124, 2401 (2002).CrossRefGoogle Scholar
  26. 26.
    V. Radeka, Ann. Rev. Nucl. Part. Sci. 38, 217 (1988).CrossRefGoogle Scholar
  27. 27.
    K. Danzmann, Class. Quant. Grav. 13, A247 (1996).CrossRefGoogle Scholar
  28. 28.
    A. Abramovici, et. al., Science 256, 325 (1992).Google Scholar
  29. 29.
    I. Percival, Phys. World, March 1997, p.43; F. Benatti and R. Floreanini, quant-ph/0208164.Google Scholar
  30. 30.
    F. Benatti and R. Floreanini, quant-ph/0204094; L.B. Crowell, Found. Phys. 16, 281 (2003).CrossRefGoogle Scholar
  31. 31.
    R.Y. Chiao and A.D. Speliotopoulos, arXiv:gr-qc/0312096.Google Scholar
  32. 32.
    M. Kasevich and S. Chu, Appl. Phys. B54, 321 (1992).Google Scholar
  33. 33.
    M.A. Lawrence et al., J. Phys. G17, 733 (1991); N.N. Efimov et al., in 22nd Intl. Cosmic Ray Conf. (Dublin, 1991); D.J. Bird et al., Astrophys. J. 441, 144 (1995); M. Takeda et al., Phys. Rev. Lett. 81, 1163 (1998); A. Watson, in Proc. Snowmass Workshop, 126 (1996).Google Scholar
  34. 34.
    K. Greisen, Phys. Rev. Lett. 16, 748 (1966); G.T. Zatsepin and V.A. Kuz';min, JETP Lett. 41, 78 (1966).Google Scholar
  35. 35.
    C.J. Cesarsky, Nucl. Phys. (Proc. Suppl.) B28, 51 (1992); L. Gonzalez-Mestres, physics/9704017; R. Aloisio, P. Blasi, P.L. Ghia, and A.F. Grillo, astro-ph/0001258; O. Bertolami and C.S. Carvalho, Phys. Rev. D61, 103002 (2000); H. Sato, astro-ph/0005218; T. Kifune, Astrophys. J. Lett. 518, L21 (1999); W. Kluzniak, astro-ph/9905308; S. Coleman and S.L. Glashow, Phys. Rev. D59, 116008 (1999); D. Colladay and A. Kostelecky, Phys. Rev. D55, 6760 (1997); R. Lieu, ApJ 568, L67 (2002); F.W. Stecker, astro-ph/0304527; M. Jankiewicz, R.V. Buniy, T.A. Kephart, and T.J. Weiler, hep-ph/0312221.Google Scholar
  36. 36.
    G. Amelino-Camelia, J. Ellis, N.E. Mavromatos, and D.V. Nanopoulos, Int. J. Mod. Phys. A12, 607 (1997).Google Scholar
  37. 37.
    G. Amelino-Camelia and T. Piran, hep-th/0006210; astro-ph/0008107.Google Scholar
  38. 38.
    R. Aloisio, P. Blasi, A. Galante, P.L. Ghia, and A.F. Grillo, Astropart. Phys. 19, 127 (2003).CrossRefGoogle Scholar
  39. 39.
    Y.J. Ng, talk given in the Huntsville Workshop 2002 (unpublished).Google Scholar
  40. 40.
    R. Aloisio, P. Blasi, A. Galante, and A.F. Grillo, astro-ph/0304050; R. Le Gallou, astro-ph/0304560.Google Scholar

Authors and Affiliations

  • Y. Jack Ng
    • 1
  1. 1.Institute of Field Physics Department of Physics and AstronomyUniversity of North CarolinaUSA

Personalised recommendations