Astrophysical Bounds on Planck Suppressed Lorentz Violation

  • T. Jacobson
  • S. Liberati
  • D. Mattingly
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 669)

Abstract

This article reviews many of the observational constraints on Lorentz symmetry violation (LV). We first describe the GZK cuto. and other phenomena that are sensitive to LV. After a brief historical sketch of research on LV, we discuss the effective field theory description of LV and related questions of principle, technical results, and observational constraints. We focus on constraints from high energy astrophysics on mass dimension five operators that contribute to LV electron and photon dispersion relations at order E/MPlanck. We also briefly discuss constraints on renormalizable operators, and review the current and future constraints on LV at order (E/MPlanck)2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. F. Mukhanov, H. A. Feldman and R. H. Brandenberger, “Theory Of Cosmological Perturbations. Part 1. Classical Perturbations. Part 2. Quantum Theory Of Perturbations. Part 3. Extensions,” Phys. Rept. 215, 203 (1992).Google Scholar
  2. 2.
    G. Amelino-Camelia, “Are we at the dawn of quantum-gravity phenomenology?,” Lect. Notes Phys. 541, 1 (2000) [arXiv:gr-qc/9910089].Google Scholar
  3. 3.
    K. Greisen, “End To The Cosmic Ray Spectrum?,” Phys. Rev. Lett. 16, 748 (1966); G. T. Zatsepin and V. A. Kuzmin, “Upper Limit Of The Spectrum Of Cosmic Rays,” JETP Lett. 4, 78 (1966) [Pisma Zh. Eksp. Teor. Fiz. 4, 114 (1966)].Google Scholar
  4. 4.
    F. W. Stecker, “Cosmic physics: The high energy frontier,” J. Phys. G 29, R47 (2003) [arXiv:astro-ph/0309027].CrossRefGoogle Scholar
  5. 5.
    T. Jacobson, S. Liberati and D. Mattingly, “Threshold effects and Planck scale Lorentz violation: Combined constraints from high energy astrophysics,” Phys. Rev. D 67, 124011 (2003) [arXiv:hep-ph/0209264].CrossRefGoogle Scholar
  6. 6.
    D. De Marco, P. Blasi and A. V. Olinto, “On the statistical significance of the GZK feature in the spectrum of ultra high energy cosmic rays,” Astropart. Phys. 20, 53 (2003) [arXiv:astro-ph/0301497].CrossRefGoogle Scholar
  7. 7.
    http://www.auger.org/Google Scholar
  8. 8.
    S. R. Coleman and S. L. Glashow, “Evading the GZK cosmic-ray cutoff,” [arXiv:hep-ph/9808446]. For previous suggestions relating LV to modification of the GZK cutoff see Kirzhnits and Chechin[10] and Gonzalez-Mestres[21].Google Scholar
  9. 9.
    O. Gagnon and G. D. Moore, “Limits on Lorentz violation from the highest energy cosmic rays,” arXiv:hep-ph/0404196.Google Scholar
  10. 10.
    See, e.g. P. A. M. Dirac, “Is there an aether?," Nature 168, 906-907 (1951); J. D. Bjorken, “A dynamical origin for the electromagnetic field," Ann. Phys. 24, 174 (1963); P. Phillips, “Is the graviton a Goldstone boson?," Physical Review 146, 966 (1966); D.I. Blokhintsev, Usp. Fiz. Nauk. 89, 185 (1966) [Sov. Phys. Usp. 9, 405 (1966)]; L.B. Rédei, “Validity of special relativity at small distances and the velocity dependence of the muon lifetime," Phys. Rev. 162, 1299-1301 (1967); T. G. Pavlopoulos, “Breakdown Of Lorentz invariance,” Phys. Rev. 159, 1106 (1967); D.A. Kirzhnits and V.A. Chechin, “Ultra-High-Energy Cosmic Rays and a Possible Generaliation of Relativistic Theory,” Yad. Fiz. 15, 1051 (1972) [Sov. J. Nucl. Phys. 15, 585 (1972)].Google Scholar
  11. 11.
    G. Amelino-Camelia, “Relativity in space-times with short-distance structure governed by an observer-independent (Planckian) length scale,” Int. J. Mod. Phys. D 11, 1643 (2002) [arXiv:gr-qc/0210063].CrossRefGoogle Scholar
  12. 12.
    C.M. Will and K. Nordvedt, Jr., “Conservation Laws and Preferred Frames in Relativistic Gravity. I. Preferred-Frame Theories and an Extended PPN Formalism," Astrophys. J. 177, 757 (1972); K. Nordvedt, Jr. and C.M. Will, “Conservation Laws and Preferred Frames in Relativistic Gravity. II. Experimental Evidence to Rule Out Preferred-Frame Theories of Gravity," Astrophys. J. 177, 775 (1972); R.W. Hellings and K. Nordvedt, Jr., “Vector-metric theory of gravity," Phys. Rev. D7, 3593 (1973).Google Scholar
  13. 13.
    H. B. Nielsen and M. Ninomiya, “Beta Function In A Noncovariant Yang-Mills Theory,” Nucl. Phys. B 141, 153 (1978); S. Chadha and H. B. Nielsen, “Lorentz Invariance As A Low-Energy Phenomenon,” Nucl. Phys. B 217, 125 (1983); H. B. Nielsen and I. Picek, “Lorentz Noninvariance,” Nucl. Phys. B 211, 269 (1983) [Addendum-ibid. B 242, 542 (1984)]; J. R. Ellis, M. K. Gaillard, D. V. Nanopoulos and S. Rudaz, “Uncertainties In The Proton Lifetime,” Nucl. Phys. B 176, 61 (1980). A. Zee, “Perhaps Proton Decay Violates Lorentz Invariance,” Phys. Rev. D 25, 1864 (1982).Google Scholar
  14. 14.
    See, for example, M. Gasperini, “Singularity prevention and broken Lorentz symmetry", Class. Quantum Grav. 4, 485 (1987); “Repulsive gravity in the very early Universe", Gen. Rel. Grav. 30, 1703 (1998); and references therein.Google Scholar
  15. 15.
    T. Jacobson and D. Mattingly, “Generally covariant model of a scalar field with high frequency dispersion and the cosmological horizon problem,” Phys. Rev. D 63, 041502 (2001). [hep-th/0009052]; “Gravity with a dynamical preferred frame,” Phys. Rev. D 64, 024028 (2001).Google Scholar
  16. 16.
    See M. Haugan and C. Will, Physics Today, May 1987; C.M. Will, Theory and Experiment in Gravitational Physics (Cambridge Univ. Press, 1993), and references therein.Google Scholar
  17. 17.
    V. A. Kostelecky and S. Samuel, “Spontaneous Breaking Of Lorentz Symmetry In String Theory,” Phys. Rev. D 39, 683 (1989).CrossRefGoogle Scholar
  18. 18.
    T. Jacobson, “Black hole evaporation and ultrashort distances,” Phys. Rev. D 44, 1731 (1991).CrossRefGoogle Scholar
  19. 19.
    W. G. Unruh, “Dumb holes and the effects of high frequencies on black hole evaporation,” Phys. Rev. D 51, 2827-2838 (1995), [arXiv:gr-qc/9409008].CrossRefGoogle Scholar
  20. 20.
    See J. Martin, this volume; or, e.g., J. Martin and R. Brandenberger, “On the dependence of the spectra of fluctuations in inflationary cosmology on trans-Planckian physics,” Phys. Rev. D 68, 063513 (2003) [arXiv:hep-th/0305161] and references therein.Google Scholar
  21. 21.
    L. Gonzalez-Mestres, “Lorentz symmetry violation and high-energy cosmic rays,”, [arXiv:physics/9712005].Google Scholar
  22. 22.
    D. Colladay and V. A. Kostelecky, “Lorentz-violating extension of the standard model,” Phys. Rev. D 58, 116002 (1998), [arXiv:hep-ph/9809521].CrossRefGoogle Scholar
  23. 23.
    V. A. Kostelecky, Proceedings of the Second Meeting on CPT and Lorentz Symmetry, Bloomington, USA, 15-18 August 2001. Singapore, World Scientific (2002).Google Scholar
  24. 24.
    M. Takeda et al., “Extension of the cosmic-ray energy spectrum beyond the predicted Greisen-Zatsepin-Kuzmin cutoff,” Phys. Rev. Lett. 81, 1163 (1998) [arXiv:astro-ph/9807193].CrossRefGoogle Scholar
  25. 25.
    S. R. Coleman and S. L. Glashow, “High-energy tests of Lorentz invariance,” Phys. Rev. D 59, 116008 (1999) [arXiv:hep-ph/9812418].CrossRefGoogle Scholar
  26. 26.
    G. Amelino-Camelia, J. R. Ellis, N. E. Mavromatos, D. V. Nanopoulos and S. Sarkar, “Potential Sensitivity of Gamma-Ray Burster Observations to Wave Dispersion in Vacuo,” Nature 393, 763 (1998) [arXiv:astro-ph/9712103].CrossRefGoogle Scholar
  27. 27.
    R. Gambini and J. Pullin, “Nonstandard optics from quantum spacetime,” Phys. Rev. D 59, 124021 (1999) [arXiv:gr-qc/9809038].CrossRefGoogle Scholar
  28. 28.
    C. N. Kozameh and M. F. Parisi, “Lorentz invariance and the semiclassical approximation of loop quantum gravity,” Class. Quant. Grav. 21, 2617 (2004) [arXiv:gr-qc/0310014].CrossRefGoogle Scholar
  29. 29.
    J. Alfaro, M. Reyes, H. A. Morales-Tecotl and L. F. Urrutia, “On alternative approaches to Lorentz violation in loop quantum gravity inspired models,” arXiv:gr-qc/0404113.Google Scholar
  30. 30.
    R. J. Gleiser and C. N. Kozameh, “Astrophysical limits on quantum gravity motivated birefringence,” Phys. Rev. D 64, 083007 (2001) [arXiv:gr-qc/0102093].CrossRefGoogle Scholar
  31. 31.
    W. Coburn and S. E. Boggs, “Polarization of the prompt gamma-ray emission from the gamma-ray burst of 6 December 2002,” Nature 423, 415 (2003) [arXiv:astro-ph/0305377].CrossRefPubMedGoogle Scholar
  32. 32.
    R. E. Rutledge and D. B. Fox, “Re-Analysis of Polarization in the Gamma-ray flux of GRB 021206,” [arXiv:astro-ph/0310385]; S. E. Boggs and W. Coburn, “Statistical Uncertainty in the Re-Analysis of Polarization in GRB021206,” [arXiv:astro-ph/0310515]. C. Wigger et al., “Gamma-Ray Burst Polarization: Limits from RHESSI Measurements,” [arXiv:astro-ph/0405525].Google Scholar
  33. 33.
    T. A. Jacobson, S. Liberati, D. Mattingly and F. W. Stecker, “New limits on Planck scale Lorentz violation in QED,” Phys. Rev. Lett. 93, 021101 (2004) [arXiv:astro-ph/0309681].CrossRefPubMedGoogle Scholar
  34. 34.
    I. G. Mitrofanov, ”A constraint on canonical quantum gravity”, Nature 426, 139 (2003).CrossRefGoogle Scholar
  35. 35.
    R. J. Protheroe and H. Meyer, “An infrared background TeV gamma ray crisis?,” Phys. Lett. B 493, 1 (2000) [arXiv:astro-ph/0005349].Google Scholar
  36. 36.
    A. K. Konopelko, A. Mastichiadis, J. G. Kirk, O. C. de Jager and F. W. Stecker, “Modelling the TeV gamma-ray spectra of two low redshift AGNs: Mkn 501 and Mkn 421,” Astrophys. J. 597, 851 (2003) [arXiv:astro-ph/0302049].CrossRefGoogle Scholar
  37. 37.
    R. C. Myers and M. Pospelov, “Experimental challenges for quantum gravity,” Phys. Rev. Lett. 90, 211601 (2003) [arXiv:hep-ph/0301124].CrossRefPubMedMathSciNetGoogle Scholar
  38. 38.
    T. Jacobson, S. Liberati and D. Mattingly, “Lorentz violation and Crab synchrotron emission: A new constraint far beyond the Planck scale,” Nature 424, 1019 (2003) [arXiv:astro-ph/0212190].CrossRefPubMedGoogle Scholar
  39. 39.
    G. Amelino-Camelia, “Improved limit on quantum-spacetime modifications of Lorentz symmetry from observations of gamma-ray blazars,” [arXiv:gr-qc/0212002]; “A perspective on quantum gravity phenomenology,” [arXiv:gr-qc/0402009].Google Scholar
  40. 40.
    E. Fischbach, M. P. Haugan, D. Tadic and H. Y. Cheng, “Lorentz Noninvariance And The Eotvos Experiments,” Phys. Rev. D 32, 154 (1985).CrossRefGoogle Scholar
  41. 41.
    C. P. Burgess, J. Cline, E. Filotas, J. Matias and G. D. Moore, “Loop-generated bounds on changes to the graviton dispersion relation,” JHEP 0203, 043 (2002) [arXiv:hep-ph/0201082].CrossRefGoogle Scholar
  42. 42.
    J. R. Ellis, N. E. Mavromatos, D. V. Nanopoulos and A. S. Sakharov, “Space-time foam may violate the principle of equivalence,” arXiv:gr-qc/0312044.Google Scholar
  43. 43.
    R. Lehnert, “Threshold analyses and Lorentz violation,” Phys. Rev. D 68, 085003 (2003) [arXiv:gr-qc/0304013].CrossRefGoogle Scholar
  44. 44.
    V. A. Kostelecky and R. Lehnert, “Stability, causality, and Lorentz and CPT violation,” Phys. Rev. D 63, 065008 (2001) [arXiv:hep-th/0012060].CrossRefGoogle Scholar
  45. 45.
    V. A. Kostelecky and S. Samuel, “Gravitational Phenomenology In Higher Dimensional Theories And Strings,” Phys. Rev. D 40, 1886 (1989).CrossRefGoogle Scholar
  46. 46.
    A. Perez and D. Sudarsky, “Comments on challenges for quantum gravity,” [arXiv:gr-qc/0306113].Google Scholar
  47. 47.
    J. Collins, A. Perez, D. Sudarsky, L. Urrutia and H. Vucetich, “Lorentz invariance: An additional fine-tuning problem,” [arXiv:gr-qc/0403053].Google Scholar
  48. 48.
    See e.g. M. Creutz, Quarks, gluons and lattices (Cambridge Univ. Press, 1985); G. Moore, “Informal Lectures on Lattice Gauge Theory,” http://www.physics.mcgill.ca/∼guymoore/latt_lectures.pdf.Google Scholar
  49. 49.
    S. G. Nibbelink and M. Pospelov, “Lorentz violation in supersymmetric field theories,” arXiv:hep-ph/0404271.Google Scholar
  50. 50.
    D. Mattingly, T. Jacobson and S. Liberati, “Threshold configurations in the presence of Lorentz violating dispersion relations,” Phys. Rev. D 67, 124012 (2003) [arXiv:hep-ph/0211466].CrossRefGoogle Scholar
  51. 51.
    D. Bear, R. E. Stoner, R. L. Walsworth, V. A. Kostelecky and C. D. Lane, “Limit on Lorentz and CPT violation of the neutron using a two-species noble-gas maser,” Phys. Rev. Lett. 85, 5038 (2000) [Erratum-ibid. 89, 209902 (2002)] [arXiv:physics/0007049].Google Scholar
  52. 52.
    R. Bluhm, “Lorentz and CPT tests in matter and antimatter,” Nucl. Instrum. Meth. B 221, 6 (2004) [arXiv:hep-ph/0308281].CrossRefGoogle Scholar
  53. 53.
    V. A. Kostelecky and M. Mewes, “Cosmological constraints on Lorentz violation in electrodynamics,” Phys. Rev. Lett. 87, 251304 (2001) [arXiv:hep-ph/0111026]; Phys. Rev. D 66, 056005 (2002) [arXiv:hep-ph/0205211].Google Scholar
  54. 54.
    B. R. Heckel et al., “Torsion balance test of spin coupled forces,” Proceedings of the International Conference on Orbis Scientiae, 1999, Coral Gables, (Kluwer, 2000); B. R. Heckel, http://www.npl.washington.edu/eotwash/publications/cpt01.pdf.Google Scholar
  55. 55.
    S. M. Carroll, G. B. Field and R. Jackiw, “Limits On A Lorentz And Parity Violating Modification Of Electrodynamics,” Phys. Rev. D 41, 1231 (1990).CrossRefGoogle Scholar
  56. 56.
    See Pavlopoulos in [10].Google Scholar
  57. 57.
    B. E. Schaefer, “Severe Limits on Variations of the Speed of Light with Frequency,” Phys. Rev. Lett. 82, 4964 (1999) [astro-ph/9810479]; S. D. Biller et al., “Limits to quantum gravity effects from observations of TeV flares in active galaxies,” Phys. Rev. Lett. 83, 2108 (1999) [arXiv:gr-qc/9810044]; P. Kaaret, “Pulsar radiation and quantum gravity,” Astronomy and Astrophysics, 345, L32-L34 (1999) [arXiv:astro-ph/9903464]; J. R. Ellis, N. E. Mavromatos, D. V. Nanopoulos and A. S. Sakharov, “Quantum-gravity analysis of gamma-ray bursts using wavelets,” Astron. Astrophys. 402, 409 (2003) [arXiv:astro-ph/0210124]; S. E. Boggs, C. B. Wunderer, K. Hurley and W. Coburn, “Testing Lorentz Non-Invariance with GRB021206,” arXiv:astro-ph/0310307, Astrophysical J. 611, L77 (2004).Google Scholar
  58. 58.
    T. J. Konopka and S. A. Major, “Observational limits on quantum geometry effects,” New J. Phys. 4, 57 (2002) [arXiv:hep-ph/0201184].CrossRefGoogle Scholar
  59. 59.
    R. Lehnert and R. Potting, “Vacuum Cerenkov radiation,” arXiv:hep-ph/0406128; “The Cerenkov effect in Lorentz-violating vacua,” arXiv:hep-ph/0408285.Google Scholar
  60. 60.
    T. Jacobson, S. Liberati and D. Mattingly, “Comments on `Improved limit on quantum-spacetime modifications of Lorentz symmetry from observations of gamma-ray blazars';,” [arXiv:gr-qc/0303001].Google Scholar
  61. 61.
    J. R. Ellis, N. E. Mavromatos and A. S. Sakharov, “Synchrotron radiation from the Crab Nebula discriminates between models of space-time foam,” Astropart. Phys. 20, 669 (2004) [arXiv:astro-ph/0308403].CrossRefGoogle Scholar
  62. 62.
    F.A. Aharonian, A.M. Atoyan, “On the mechanisms of gamma radiation in the Crab Nebula”, Mon. Not. R. Astron. Soc. 278, 525 (1996).Google Scholar
  63. 63.
    A. M. Hillas et al., The Spectrum of TeV gamma rays from the crab nebula, Astrophysical J., 503, 744 (1998).CrossRefGoogle Scholar
  64. 64.
    A. Harding, “Gamma-ray pulsars: Models and predictions” in High energy gamma-ray astronomy: international symposium Heidelberg, Germany, 26-30 June 2000. Melville, NY, American Institute of Physics (2001) [arXiv:astro-ph/0012268].Google Scholar
  65. 65.
    W. Kluzniak, “Transparency Of The Universe To Tev Photons In Some Models Of Quantum Gravity,” Astropart. Phys. 11, 117 (1999).CrossRefGoogle Scholar
  66. 66.
    G. Amelino-Camelia and T. Piran, “Planck-scale deformation of Lorentz symmetry as a solution to the UHECR and the TeV-gamma paradoxes,” Phys. Rev. D 64, 036005 (2001) [arXiv:astro-ph/0008107].CrossRefGoogle Scholar
  67. 67.
    F. W. Stecker and S. L. Glashow, “New tests of Lorentz invariance following from observations of the highest energy cosmic gamma rays,” Astropart. Phys. 16, 97 (2001) [arXiv:astro-ph/0102226].CrossRefGoogle Scholar
  68. 68.
    F. W. Stecker, “Constraints on Lorentz invariance violating quantum gravity and large extra dimensions models using high energy gamma ray observations,” Astropart. Phys. 20, 85 (2003) [arXiv:astro-ph/0308214].Google Scholar
  69. 69.
    C. Adam and F. R. Klinkhamer, “Photon decay in a CPT-violating extension of quantum electrodynamics,” Nucl. Phys. B 657, 214 (2003) [arXiv:hep-th/0212028]; V. A. Kostelecky and A. G. M. Pickering, “Vacuum photon splitting in Lorentz-violating quantum electrodynamics,” Phys. Rev. Lett. 91, 031801 (2003) [arXiv:hep-ph/0212382]; C. Adam and F. R. Klinkhamer, “Comment on `Vacuum photon splitting in Lorentz-violating quantum electrodynamics';,” arXiv:hep-ph/0312153.CrossRefGoogle Scholar
  70. 70.
    D. Mattingly and B. McElrath, To be published.Google Scholar
  71. 71.
    G. Amelino-Camelia, “Proposal of a second generation of quantum-gravity-motivated Lorentz-symmetry tests: Sensitivity to effects suppressed quadratically by the Planck scale,” Int. J. Mod. Phys. D 12, 1633 (2003) [arXiv:gr-qc/0305057].Google Scholar
  72. 72.
    T. Jacobson, S. Liberati and D. Mattingly, “Quantum gravity phenomenology and Lorentz violation,” arXiv:gr-qc/0404067.Google Scholar

Authors and Affiliations

  • T. Jacobson
    • 1
  • S. Liberati
    • 2
  • D. Mattingly
    • 3
  1. 1.Institut d'Astrophysique de Paris, France, and Department of PhysicsUniversity of MarylandUSA
  2. 2.SISSA and INFNTriesteItaly
  3. 3.Department of PhysicsUniversity of California at DavisUSA

Personalised recommendations