Lattice Hadron Physics pp 71-112

Part of the Lecture Notes in Physics book series (LNP, volume 663)

Baryon Spectroscopy in Lattice QCD

  • D.B. Leinweber
  • W. Melnitchouk
  • D.G. Richards
  • A.G. Williams
  • J.M. Zanotti
Chapter

Abstract

We review recent developments in the study of excited baryon spectroscopy in lattice QCD. After introducing the basic methods used to extract masses from correlation functions, we discuss various interpolating fields and lattice actions commonly used in the literature. We present a survey of results of recent calculations of excited baryons in quenched QCD, and outline possible future directions in the study of baryon spectra.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    V. Burkert et al., Few Body Syst. Suppl. 11 (1999) 1.Google Scholar
  2. 2.
    http://www.lepp.cornell.edu/public/CLEO/spoke/CLEOc/.Google Scholar
  3. 3.
    http://www.gsi.de/zukunftsprojekt/experimente/hesr-panda/.Google Scholar
  4. 4.
    http://www.jlab.org/Hall-D/.Google Scholar
  5. 5.
    S. Capstick and W. Roberts, Prog. Part. Nucl. Phys. 45 (2000) S241.CrossRefGoogle Scholar
  6. 6.
    N. Isgur and G. Karl, Phys. Lett. B 72 (1977) 109; Phys. Rev. D 19 (1979) 2653.Google Scholar
  7. 7.
    Z.-P. Li, V. Burkert and Z.-J. Li, Phys. Rev. D 46 (1992) 70; C. E. Carlson and N. C. Mukhopadhyay, Phys. Rev. Lett. 67 (1991) 3745.Google Scholar
  8. 8.
    P. A. M. Guichon, Phys. Lett. B 164 (1985) 361.CrossRefGoogle Scholar
  9. 9.
    O. Krehl, C. Hanhart, S. Krewald and J. Speth, Phys. Rev. C 62 (2000) 025207.CrossRefGoogle Scholar
  10. 10.
    R. H. Dalitz and J. G. McGinley, in Low and Intermediate Energy Kaon-Nucleon Physics,ed. E. Ferarri and G. Violini (Reidel, Boston, 1980), p. 381; R. H. Dalitz, T.C. Wong and G. Rajasekaran, Phys. Rev. 153 (1967) 1617; E. A. Veit, B. K. Jennings, R. C. Barrett and A. W. Thomas, Phys. Lett. B 137 (1984) 415; E. A. Veit, B. K. Jennings, A. W. Thomas and R. C. Barrett, Phys. Rev. D 31 (1985) 1033; P. B. Siegel and W. Weise, Phys. Rev. C 38 (1988) 2221; N. Kaiser, P. B. Siegel and W. Weise, Nucl. Phys. A594 (1995) 325; E. Oset, A. Ramos and C. Bennhold, Phys. Lett. B 527 (2002) 99 [Erratum-ibid. B 530 (2002) 260].Google Scholar
  11. 11.
    D. B. Leinweber, A. W. Thomas, K. Tsushima and S. V. Wright, Phys. Rev. D 61 (2000) 074502.CrossRefGoogle Scholar
  12. 12.
    R. D. Young, D. B. Leinweber, A. W. Thomas and S. V. Wright, Phys. Rev. D 66 (2002) 094507.CrossRefGoogle Scholar
  13. 13.
    D. Morel, B. Crouch, D. B. Leinweber and A. W. Thomas, “Physical baryon resonance spectroscopy from lattice QCD,”arXiv:nucl-th/0309044.Google Scholar
  14. 14.
    A. De Rújula, H. Georgi and S.L. Glashow, Phys. Rev. D 12 (1975) 147.CrossRefGoogle Scholar
  15. 15.
    L. Y. Glozman and D. O. Riska, Phys. Rep. 268 (1996) 263; L. Y. Glozman, Phys. Lett. B 494 (2000) 58.Google Scholar
  16. 16.
    D.B. Leinweber, Annals Phys. 198 (1990) 203.CrossRefGoogle Scholar
  17. 17.
    S. Capstick and N. Isgur, Phys. Rev. D 34 (1986) 2809.CrossRefGoogle Scholar
  18. 18.
    C. L. Schat, J. L. Goity and N. N. Scoccola, Phys. Rev. Lett. 88 (2002) 102002; C. E. Carlson, C. D. Carone, J. L. Goity and R. F. Lebed, Phys. Rev. D 59 (1999) 114008; J. L. Goity, Phys. Lett. B 414 (1997) 140; D. Pirjol and C. Schat,Phys. Rev. D 67 (2003) 096009.Google Scholar
  19. 19.
    See Penta-Quark 2003 Workshop, Jefferson Lab, Virginia (November 2003),http://www.jlab.org/intralab/calendar/archive03/pentaquark/.Google Scholar
  20. 20.
    D. B. Leinweber, A.W. Thomas, K. Tsushima and S.V. Wright, Phys. Rev. D 64 (2001) 094502.CrossRefGoogle Scholar
  21. 21.
    C. R. Allton et al. [UKQCD Collaboration], Phys. Rev. D 47 (1993) 5128.CrossRefGoogle Scholar
  22. 22.
    D. B. Leinweber, Phys. Rev. D 51 (1995) 6383.CrossRefGoogle Scholar
  23. 23.
    M. W. Hecht and T. A. DeGrand, Phys. Lett. B 275 (1992) 435; T. A. DeGrand and M. W. Hecht, Phys. Rev. D 46 (1992) 3937.Google Scholar
  24. 24.
    F. X. Lee and D. B. Leinweber, Nucl. Phys. Proc. Suppl. 73 (1999) 258.CrossRefGoogle Scholar
  25. 25.
    F. X. Lee, Nucl. Phys. Proc. Suppl. 94 (2001) 251.CrossRefGoogle Scholar
  26. 26.
    N. Nakajima, H. Matsufuru, Y. Nemoto and H. Suganuma, “SU(3) lattice QCD study for octet and decuplet baryon spectra,” arXiv:hep-lat/0204014; Y. Nemoto, N. Nakajima, H. Matsufuru and H. Suganuma, Nucl. Phys. A 721 (2003) 879.Google Scholar
  27. 27.
    S. Sasaki, T. Blum and S. Ohta, Phys. Rev. D 65 (2002) 074503. S. Sasaki, “Lattice study of nucleon properties with domain wall fermions,” arXiv:hep-lat/0110052.Google Scholar
  28. 28.
    D. Kaplan, Phys. Lett. B 288 (1992) 342.CrossRefGoogle Scholar
  29. 29.
    S. Sasaki, Prog. Theor. Phys. Suppl. 151 (2003) 143; K. Sasaki, S. Sasaki, T. Hatsuda and M. Asakawa, “Excited nucleon spectrum from lattice QCD with maximum entropy method,” arXiv:hep-lat/0309177.Google Scholar
  30. 30.
    B. Sheikholeslami and R. Wohlert, Nucl. Phys. B 259 (1985) 572.CrossRefGoogle Scholar
  31. 31.
    D. G. Richards, Nucl. Phys. Proc. Suppl. 94 (2001) 269; M. Göckeler et al. [QCDSF Collaboration], Phys. Lett. B 532 (2002) 63; 32 D. G. Richards et al., [Lattice Hadron Physics Collaboration], Nucl. Phys. Proc. Suppl. 109 (2002) 89.Google Scholar
  32. 32.
    D. Brommel, P. Crompton, C. Gattringer, L. Y. Glozman, C. B. Lang, S. Schaefer and A. Schafer [BGR Collaboration], “Excited nucleons with chirally improved fermions,” arXiv:hep-ph/0307073; C. Gattringer et al., Nucl. Phys. B 677 (2004) 3.Google Scholar
  33. 33.
    J. M. Zanotti et al. [CSSM Lattice Collaboration], Phys. Rev. D 65 (2002) 074507; Nucl. Phys. Proc. Suppl. 109 (2002) 101.Google Scholar
  34. 34.
    W. Melnitchouk, S. Bilson-Thompson, F. D. R. Bonnet, F. X. Lee, D. B. Leinweber, A. G. Williams, J. M. Zanotti and J. B. Zhang, Phys. Rev. D 67 (2003) 114506.CrossRefGoogle Scholar
  35. 35.
    J. M. Zanotti et al. [CSSM Lattice Collaboration], Phys. Rev. D 68 (2003) 054506.Google Scholar
  36. 36.
    F. X. Lee et al., Nucl. Phys. Proc. Suppl. 119 (2003) 296.CrossRefGoogle Scholar
  37. 37.
    S. J. Dong, T. Draper, I. Horvath, F. X. Lee, K. F. Liu, N. Mathur and J. B. Zhang, “Roper resonance and 11(1535) from lattice QCD,” arXiv:hep-ph/0306199.Google Scholar
  38. 38.
    F. Csikor, Z. Fodor, S. D. Katz and T. G. Kovacs, JHEP 0311 (2003) 070.CrossRefGoogle Scholar
  39. 39.
    S. Sasaki, “Lattice study of exotic S = +1 baryon,” arXiv:hep-lat/0310014.Google Scholar
  40. 40.
    T. W. Chiu and T. H. Hsieh, “Pentaquark baryons in quenched lattice QCD with exact chiral symmetry,”arXiv:hep-ph/0403020.Google Scholar
  41. 41.
    B. Lasscock et al. [CSSM Lattice Collaboration],in preparation.Google Scholar
  42. 42.
    C. Michael, Nucl. Phys. B 259 (1985) 58.CrossRefGoogle Scholar
  43. 43.
    M. Lüscher and U. Wolff, Nucl. Phys. B 339 (1990) 222.CrossRefGoogle Scholar
  44. 44.
    C. McNeile and C. Michael, Phys. Rev. D 63 (2000) 114503.CrossRefGoogle Scholar
  45. 45.
    C. J. Morningstar and M. J. Peardon, Phys. Rev. D 60 (1999) 034509; Phys. Rev. D 56 (1997) 4043.Google Scholar
  46. 46.
    For an introduction to finite groups, see Symmetry in Physics, Vol. I, J. P. Elliott and P. G. Dawber, Oxford University Press (1979).Google Scholar
  47. 47.
    R. C. Johnson, Phys. Lett. 114B (1982) 147. Google Scholar
  48. 48.
    R. Edwards et al. [Lattice Hadron Physics Collaboration], “Baryonic operators for lattice simulations,” arXiv:hep-lat/0309079.Google Scholar
  49. 49.
    R. G. Edwards et al. [Lattice Hadron Physics Collaboration], in preparation.Google Scholar
  50. 50.
    S. Basak et al. [Lattice Hadron Physics Collaboration], “Mass spectrum of N* and source optimization,” arXiv:hep-lat/0309091.Google Scholar
  51. 51.
    S. Gusken, Nucl. Phys. Proc. Suppl. 17 (1990) 361.CrossRefGoogle Scholar
  52. 52.
    A. Frommer, V. Hannemann, B. Nockel, T. Lippert and K. Schilling, Int. J. Mod. Phys. C 5 (1994) 1073.CrossRefGoogle Scholar
  53. 53.
    D. B. Leinweber, R. W. Woloshyn and T. Draper, Phys. Rev. D 43 (1991) 1659.CrossRefGoogle Scholar
  54. 54.
    K. Bowler et al., Nucl. Phys. B 240 (1984) 213.CrossRefGoogle Scholar
  55. 55.
    D. B. Leinweber, T. Draper and R. W. Woloshyn, Phys. Rev. D 46 (1992) 3067.CrossRefGoogle Scholar
  56. 56.
    F. X. Lee, D. B. Leinweber, L. Zhou, J. M. Zanotti and S. Choe, Nucl. Phys. Proc. Suppl. 106 (2002) 248.CrossRefGoogle Scholar
  57. 57.
    Y. Chung, H. G. Dosch, M. Kremer and D. Schall, Nucl. Phys. B 197 (1982) 55.CrossRefGoogle Scholar
  58. 58.
    M. Benmerrouche, R. M. Davidson and N. C. Mukhopadhyay, Phys. Rev. C 39 (1989) 2339.CrossRefGoogle Scholar
  59. 59.
    R. G. Edwards, U. M. Heller and T. R. Klassen, Nucl. Phys. B517 (1998) 377.CrossRefGoogle Scholar
  60. 60.
    R. Sommer, Nucl. Phys. B 411 (1994) 839.CrossRefGoogle Scholar
  61. 61.
    J. N. Labrenz and S. R. Sharpe, Phys. Rev. D 54 (1996) 4595.CrossRefGoogle Scholar
  62. 62.
    D. B. Leinweber, Nucl. Phys. Proc. Suppl. 109 (2002) 45.CrossRefGoogle Scholar
  63. 63.
    W. Kamleh, D. B. Leinweber and A. G. Williams, “Hybrid Monte Carlo with fat link fermion actions,”arXiv:hep-lat/0403019.Google Scholar
  64. 64.
    W. Kamleh, D. B. Leinweber and A. G. Williams, “Dynamical fat link fermions,” arXiv:hep-lat/0402036.Google Scholar
  65. 65.
    W. Kamleh, D. B. Leinweber and A. G. Williams, “Dynamical FLIC fermions,” arXiv:hep-lat/0309154.Google Scholar

Copyright information

Authors and Affiliations

  • D.B. Leinweber
    • 1
  • W. Melnitchouk
    • 2
  • D.G. Richards
    • 2
  • A.G. Williams
    • 1
  • J.M. Zanotti
    • 3
  1. 1.Department of Physics and Mathematical Physics and Special Research Centre for the Subatomic Structure of MatterUniversity of AdelaideAustralia
  2. 2.Jefferson LabUSA
  3. 3.John von Neumann-Institut für Computing NIC, Deutsches Elektronen-Synchrotron DESYGermany

Personalised recommendations