Skip to main content

Ligands and Signaling of Mas-Related G Protein-Coupled Receptor-X2 in Mast Cell Activation

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 179))

Abstract

Mas-related G protein-coupled receptor-X2 (MRGPRX2) is known as a novel receptor to activate mast cells (MCs). MRGPRX2 plays a dual role in promoting MC-dependent host defense and immunomodulation and contributing to the pathogenesis of pseudo-allergic drug reactions, pain, itching, and inflammatory diseases. In this article, we discuss the possible signaling pathways of MCs activation mediated by MRGPRX2 and summarize and classify agonists and inhibitors of MRGPRX2 in MCs activation. MRGPRX2 is a low-affinity and low-selectivity receptor, which allows it to interact with a diverse group of ligands. Diverse MRGPRX2 ligands utilize conserved residues in its transmembrane (TM) domains and carboxyl-terminus Ser/Thr residues to undergo ligand binding and G protein coupling. The coupling likely initiates phosphorylation cascades, induces Ca2+ mobilization, and causes degranulation and generation of cytokines and chemokines via MAPK and NF-κB pathways, resulting in MCs activation. Agonists of MRGPRX2 on MCs are divided into peptides (including antimicrobial peptides, neuropeptides, MC degranulating peptides, peptide hormones) and nonpeptides (including FDA-approved drugs). Inhibitors of MRGPRX2 include non-selective GPCR inhibitors, herbal extracts, small-molecule MRGPRX2 antagonists, and DNA aptamer drugs. Screening and classifying MRGPRX2 ligands and summarizing their signaling pathways would improve our understanding of MRGPRX2-mediated physiological and pathological effects on MCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham SN, St John AL (2010) Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol 10(6):440–452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahamed J, Venkatesha RT, Thangam EB, Ali H (2004) C3a enhances nerve growth factor-induced NFAT activation and chemokine production in a human mast cell line, HMC-1. J Immunol 172(11):6961–6968

    CAS  PubMed  Google Scholar 

  • Alessandri-Haber N, Dina OA, Chen X, Levine JD (2009) TRPC1 and TRPC6 channels cooperate with TRPV4 to mediate mechanical hyperalgesia and nociceptor sensitization. J Neurosci 29(19):6217–6228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ali H (2017) Emerging roles for MAS-related G protein-coupled receptor-X2 in host defense peptide, opioid, and neuropeptide-mediated inflammatory reactions. Adv Immunol 136:123–162

    CAS  PubMed  Google Scholar 

  • Alkanfari I, Gupta K, Jahan T, Ali H (2018) Naturally occurring missense MRGPRX2 variants display loss of function phenotype for mast cell degranulation in response to substance P, Hemokinin-1, human beta-Defensin-3, and Icatibant. J Immunol 201(2):343–349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alkanfari I, Freeman KB, Roy S, Jahan T, Scott RW, Ali H (2019) Small-molecule host-defense peptide mimetic antibacterial and antifungal agents activate human and mouse mast cells via mas-related GPCRs. Cell 8(4)

    Google Scholar 

  • Arifuzzaman M, Mobley YR, Choi HW, Bist P, Salinas CA, Brown ZD, Chen SL, Staats HF, Abraham SN (2019) MRGPR-mediated activation of local mast cells clears cutaneous bacterial infection and protects against reinfection. Sci Adv 5(1):eaav0216

    PubMed  PubMed Central  Google Scholar 

  • Asano T, Katada T, Gilman AG, Ross EM (1984) Activation of the inhibitory GTP-binding protein of adenylate cyclase, Gi, by beta-adrenergic receptors in reconstituted phospholipid vesicles. J Biol Chem 259(15):9351–9354

    CAS  PubMed  Google Scholar 

  • Azimi E, Reddy VB, Shade KC, Anthony RM, Talbot S, Pereira PJS, Lerner EA (2016) Dual action of neurokinin-1 antagonists on mas-related GPCRs. JCI Insight 1(16):e89362

    PubMed  PubMed Central  Google Scholar 

  • Babina M, Guhl S, Artuc M, Zuberbier T (2018a) Allergic FcepsilonRI- and pseudo-allergic MRGPRX2-triggered mast cell activation routes are independent and inversely regulated by SCF. Allergy 73(1):256–260

    CAS  PubMed  Google Scholar 

  • Babina M, Wang Z, Artuc M, Guhl S, Zuberbier T (2018b) MRGPRX2 is negatively targeted by SCF and IL-4 to diminish pseudo-allergic stimulation of skin mast cells in culture. Exp Dermatol 27(11):1298–1303

    CAS  PubMed  Google Scholar 

  • Bader M, Alenina N, Andrade-Navarro MA, Santos RA (2014) MAS and its related G protein-coupled receptors, Mrgprs. Pharmacol Rev 66(4):1080–1105

    CAS  PubMed  Google Scholar 

  • Bairamashvili DI, Voitenko VG, Gushchin IS, Zinchenko AA, Miroshnikov AI (1989) The histamine-liberating action of polymyxin B and its analogs. Biull Eksp Biol Med 107(4):447–449

    CAS  PubMed  Google Scholar 

  • Barrocas AM, Cochrane DE, Carraway RE, Feldberg RS (1999) Neurotensin stimulation of mast cell secretion is receptor-mediated, pertussis-toxin sensitive and requires activation of phospholipase C. Immunopharmacology 41(2):131–137

    CAS  PubMed  Google Scholar 

  • Benovic JL, Strasser RH, Caron MG, Lefkowitz RJ (1986) Beta-adrenergic receptor kinase: identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor. Proc Natl Acad Sci U S A 83(9):2797–2801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borriello F, Iannone R, Marone G (2017) Histamine release from mast cells and basophils. Handb Exp Pharmacol 241:121–139

    CAS  PubMed  Google Scholar 

  • Braxas H, Rafraf M, Karimi Hasanabad S, Asghari Jafarabadi M (2019) Effectiveness of Genistein supplementation on metabolic factors and antioxidant status in postmenopausal women with type 2 diabetes mellitus. Can J Diabetes 43(7):490–497

    PubMed  Google Scholar 

  • Buku A (1999) Mast cell degranulating (MCD) peptide: a prototypic peptide in allergy and inflammation. Peptides 20(3):415–420

    CAS  PubMed  Google Scholar 

  • Bunney TD, Katan M (2006) Phospholipase C epsilon: linking second messengers and small GTPases. Trends Cell Biol 16(12):640–648

    CAS  PubMed  Google Scholar 

  • Bunney TD, Katan M (2011) PLC regulation: emerging pictures for molecular mechanisms. Trends Biochem Sci 36(2):88–96

    CAS  PubMed  Google Scholar 

  • Burton MF, Steel PG (2009) The chemistry and biology of LL-37. Nat Prod Rep 26(12):1572–1584

    CAS  PubMed  Google Scholar 

  • Cabrera MP, Alvares DS, Leite NB, de Souza BM, Palma MS, Riske KA, Neto JR (2011) New insight into the mechanism of action of wasp mastoparan peptides: lytic activity and clustering observed with giant vesicles. Langmuir 27(17):10805–10813

    PubMed  Google Scholar 

  • Callahan BN, Kammala AK, Syed M, Yang C, Occhiuto CJ, Nellutla R, Chumanevich AP, Oskeritzian CA, Das R, Subramanian H (2020) Osthole, a natural plant derivative inhibits MRGPRX2 induced mast cell responses. Front Immunol 11:703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carbonetti NH (2015) Contribution of pertussis toxin to the pathogenesis of pertussis disease. Pathog Dis 73(8):ftv073

    PubMed  PubMed Central  Google Scholar 

  • Cayrol C, Girard JP (2018) Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol Rev 281(1):154–168

    CAS  PubMed  Google Scholar 

  • Chavarria D, Silva T, Magalhaes e Silva D, Remiao F, Borges F (2016) Lessons from black pepper: piperine and derivatives thereof. Expert Opin Ther Pat 26(2):245–264

    CAS  PubMed  Google Scholar 

  • Che D, Wang J, Ding Y, Liu R, Cao J, Zhang Y, Hou Y, An H, Gao Z, Zhang T (2018) Mivacurium induce mast cell activation and pseudo-allergic reactions via MAS-related G protein coupled receptor-X2. Cell Immunol 332:121–128

    CAS  PubMed  Google Scholar 

  • Chen X, Niyonsaba F, Ushio H, Nagaoka I, Ikeda S, Okumura K, Ogawa H (2006) Human cathelicidin LL-37 increases vascular permeability in the skin via mast cell activation, and phosphorylates MAP kinases p38 and ERK in mast cells. J Dermatol Sci 43(1):63–66

    CAS  PubMed  Google Scholar 

  • Chen X, Niyonsaba F, Ushio H, Hara M, Yokoi H, Matsumoto K, Saito H, Nagaoka I, Ikeda S, Okumura K, Ogawa H (2007) Antimicrobial peptides human beta-defensin (hBD)-3 and hBD-4 activate mast cells and increase skin vascular permeability. Eur J Immunol 37(2):434–444

    CAS  PubMed  Google Scholar 

  • Chiang CY, Lee CC, Fan CK, Huang HM, Chiang BL, Lee YL (2017) Osthole treatment ameliorates Th2-mediated allergic asthma and exerts immunomodulatory effects on dendritic cell maturation and function. Cell Mol Immunol

    Google Scholar 

  • Choi JE, Di Nardo A (2018) Skin neurogenic inflammation. Semin Immunopathol 40(3):249–259

    PubMed  PubMed Central  Google Scholar 

  • Choi SS, Lahn BT (2003) Adaptive evolution of MRG, a neuron-specific gene family implicated in nociception. Genome Res 13(10):2252–2259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chompunud Na Ayudhya C, Roy S, Alkanfari I, Ganguly A, Ali H (2019) Identification of gain and loss of function missense variants in MRGPRX2’s Transmembrane and intracellular domains for mast cell activation by substance P. Int J Mol Sci 20(21)

    Google Scholar 

  • Chou SY, Hsu CS, Wang KT, Wang MC, Wang CC (2007) Antitumor effects of Osthol from Cnidium monnieri: an in vitro and in vivo study. Phytother Res 21(3):226–230

    CAS  PubMed  Google Scholar 

  • Chu SC, Hsieh YS, Lin JY (1992) Inhibitory effects of flavonoids on Moloney murine leukemia virus reverse transcriptase activity. J Nat Prod 55(2):179–183

    CAS  PubMed  Google Scholar 

  • Cole AM, Hong T, Boo LM, Nguyen T, Zhao C, Bristol G, Zack JA, Waring AJ, Yang OO, Lehrer RI (2002) Retrocyclin: a primate peptide that protects cells from infection by T- and M-tropic strains of HIV-1. Proc Natl Acad Sci U S A 99(4):1813–1818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cole AL, Herasimtschuk A, Gupta P, Waring AJ, Lehrer RI, Cole AM (2007) The retrocyclin analogue RC-101 prevents human immunodeficiency virus type 1 infection of a model human cervicovaginal tissue construct. Immunology 121(1):140–145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cong C, Kluwe L, Li S, Liu X, Liu Y, Liu H, Gui W, Liu T, Xu L (2019) Paeoniflorin inhibits tributyltin chloride-induced apoptosis in hypothalamic neurons via inhibition of MKK4-JNK signaling pathway. J Ethnopharmacol 237:1–8

    CAS  PubMed  Google Scholar 

  • Cutroneo P, Polimeni G, Curcuruto R, Calapai G, Caputi AP (2007) Adverse reactions to contrast media: an analysis from spontaneous reporting data. Pharmacol Res 56(1):35–41

    CAS  PubMed  Google Scholar 

  • de Lecea L, Criado JR, Prospero-Garcia O, Gautvik KM, Schweitzer P, Danielson PE, Dunlop CL, Siggins GR, Henriksen SJ, Sutcliffe JG (1996) A cortical neuropeptide with neuronal depressant and sleep-modulating properties. Nature 381(6579):242–245

    PubMed  Google Scholar 

  • de Pater GH, Florvaag E, Johansson SG, Irgens A, Petersen MN, Guttormsen AB (2017) Six years without pholcodine; Norwegians are significantly less IgE-sensitized and clinically more tolerant to neuromuscular blocking agents. Allergy 72(5):813–819

    PubMed  Google Scholar 

  • Deng Z, Xu C (2017) Role of the neuroendocrine antimicrobial peptide catestatin in innate immunity and pain. Acta Biochim Biophys Sin Shanghai 49(11):967–972

    CAS  PubMed  Google Scholar 

  • Diamond G, Beckloff N, Weinberg A, Kisich KO (2009) The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 15(21):2377–2392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Che D, Li C, Cao J, Wang J, Ma P, Zhao T, An H, Zhang T (2019) Quercetin inhibits Mrgprx2-induced pseudo-allergic reaction via PLCgamma-IP3R related Ca(2+) fluctuations. Int Immunopharmacol 66:185–197

    CAS  PubMed  Google Scholar 

  • Dong X, Han S, Zylka MJ, Simon MI, Anderson DJ (2001) A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106(5):619–632

    CAS  PubMed  Google Scholar 

  • Dwivedi R, Aggarwal P, Bhavesh NS, Kaur KJ (2019) Design of therapeutically improved analogue of the antimicrobial peptide, indolicidin, using a glycosylation strategy. Amino Acids 51(10–12):1443–1460

    CAS  PubMed  Google Scholar 

  • Fan H, Gao Z, Ji K, Li X, Wu J, Liu Y, Wang X, Liang H, Liu P, Chen D, Zhao F (2019) The in vitro and in vivo anti-inflammatory effect of osthole, the major natural coumarin from Cnidium monnieri (L.) cuss, via the blocking of the activation of the NF-kappaB and MAPK/p38 pathways. Phytomedicine 58:152864

    CAS  PubMed  Google Scholar 

  • Fu Y, Hu X, Cao Y, Zhang Z, Zhang N (2015) Saikosaponin a inhibits lipopolysaccharide-oxidative stress and inflammation in human umbilical vein endothelial cells via preventing TLR4 translocation into lipid rafts. Free Radic Biol Med 89:777–785

    CAS  PubMed  Google Scholar 

  • Fujisawa D, Kashiwakura J, Kita H, Kikukawa Y, Fujitani Y, Sasaki-Sakamoto T, Kuroda K, Nunomura S, Hayama K, Terui T, Ra C, Okayama Y (2014) Expression of mas-related gene X2 on mast cells is upregulated in the skin of patients with severe chronic urticaria. J Allergy Clin Immunol 134(3):622–633.e629

    CAS  PubMed  Google Scholar 

  • Gilfillan AM, Austin SJ, Metcalfe DD (2011) Mast cell biology: chapter 5 regulators of Ca 2+ signaling in mast cells. Adv Exp Med Biol 62:81–110

    Google Scholar 

  • Grassin-Delyle S, Naline E, Buenestado A, Risse PA, Sage E, Advenier C, Devillier P (2010) Expression and function of human hemokinin-1 in human and Guinea pig airways. Respir Res 11:139

    PubMed  PubMed Central  Google Scholar 

  • Green DP, Limjunyawong N, Gour N, Pundir P, Dong X (2019) A mast-cell-specific receptor mediates neurogenic inflammation and pain. Neuron 101(3):412–420.e413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith JW, Sokol CL, Luster AD (2014) Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 32:659–702

    CAS  PubMed  Google Scholar 

  • Gupta K, Kotian A, Subramanian H, Daniell H, Ali H (2015) Activation of human mast cells by retrocyclin and protegrin highlight their immunomodulatory and antimicrobial properties. Oncotarget 6(30):28573–28587

    PubMed  PubMed Central  Google Scholar 

  • Gupta K, Subramanian H, Ali H (2016) Modulation of host defense peptide-mediated human mast cell activation by LPS. Innate Immun 22(1):21–30

    CAS  PubMed  Google Scholar 

  • Gupta K, Idahosa C, Roy S, Lee D, Subramanian H, Dhingra A, Boesze-Battaglia K, Korostoff J, Ali H (2017) Differential regulation of mas-related G protein-coupled receptor X2-mediated mast cell degranulation by antimicrobial host defense peptides and porphyromonas gingivalis lipopolysaccharide. Infect Immun 85(10)

    Google Scholar 

  • Hagermark O, Hokfelt T, Pernow B (1978) Flare and itch induced by substance P in human skin. J Invest Dermatol 71(4):233–235

    CAS  PubMed  Google Scholar 

  • Han S, Lv Y, Kong L, Che D, Liu R, Fu J, Cao J, Wang J, Wang C, He H, Zhang T, Dong X, He L (2017) Use of the relative release index for histamine in LAD2 cells to evaluate the potential anaphylactoid effects of drugs. Sci Rep 7(1):13714

    PubMed  PubMed Central  Google Scholar 

  • Hazlett L, Wu M (2011) Defensins in innate immunity. Cell Tissue Res 343(1):175–188

    CAS  PubMed  Google Scholar 

  • Helm B, Marsh P, Vercelli D, Padlan E, Gould H, Geha R (1988) The mast cell binding site on human immunoglobulin E. Nature 331(6152):180–183

    CAS  PubMed  Google Scholar 

  • Henao MP, Ghaffari G (2016) Anaphylaxis to polymyxin B-trimethoprim eye drops. Ann Allergy Asthma Immunol 116(4):372

    PubMed  Google Scholar 

  • Hoeprich PD (1970) The polymyxins. Med Clin North Am 54(5):1257–1265

    CAS  PubMed  Google Scholar 

  • Hook WA, Tsuji S, Siraganian RP (1990) Magainin-2 releases histamine from rat mast cells. Proc Soc Exp Biol Med 193(1):50–55

    CAS  PubMed  Google Scholar 

  • Huang L, Dong Y, Wu J, Wang P, Zhou H, Li T, Liu L (2017) Sinomenine-induced histamine release-like anaphylactoid reactions are blocked by tranilast via inhibiting NF-kappaB signaling. Pharmacol Res 125(Pt B):150–160

    CAS  PubMed  Google Scholar 

  • Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52(7):1757–1768

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasaki M, Akiba Y, Kaunitz JD (2019) Recent advances in vasoactive intestinal peptide physiology and pathophysiology: focus on the gastrointestinal system. F1000Res 8

    Google Scholar 

  • Jardim FR, de Rossi FT, Nascimento MX, da Silva Barros RG, Borges PA, Prescilio IC, de Oliveira MR (2018) Resveratrol and brain mitochondria: a review. Mol Neurobiol 55(3):2085–2101

    CAS  PubMed  Google Scholar 

  • Jasani B, Kreil G, Mackler BF, Stanworth DR (1979) Further studies on the structural requirements for polypeptide-mediated histamine release from rat mast cells. Biochem J 181(3):623–632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Borrelli LA, Kanaoka Y, Bacskai BJ, Boyce JA (2007) CysLT2 receptors interact with CysLT1 receptors and down-modulate cysteinyl leukotriene dependent mitogenic responses of mast cells. Blood 110(9):3263–3270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Hu S, Che D, An H, Liu R (2019) A mast-cell-specific receptor mediates Iopamidol induced immediate IgE-independent anaphylactoid reactions. Int Immunopharmacol 75:105800

    CAS  PubMed  Google Scholar 

  • Johnson T, Siegel D (2014) Complanadine A, a selective agonist for the mas-related G protein-coupled receptor X2. Bioorg Med Chem Lett 24(15):3512–3515

    CAS  PubMed  Google Scholar 

  • Kamohara M, Matsuo A, Takasaki J, Kohda M, Matsumoto M, Matsumoto S, Soga T, Hiyama H, Kobori M, Katou M (2005) Identification of MrgX2 as a human G-protein-coupled receptor for proadrenomedullin N-terminal peptides. Biochem Biophys Res Commun 330(4):1146–1152

    CAS  PubMed  Google Scholar 

  • Kanazawa K, Okumura K, Ogawa H, Niyonsaba F (2016) An antimicrobial peptide with angiogenic properties, AG-30/5C, activates human mast cells through the MAPK and NF-kappaB pathways. Immunol Res 64(2):594–603

    CAS  PubMed  Google Scholar 

  • Kandaswami C, Perkins E, Drzewiecki G, Soloniuk DS, Middleton E Jr (1992) Differential inhibition of proliferation of human squamous cell carcinoma, gliosarcoma and embryonic fibroblast-like lung cells in culture by plant flavonoids. Anti-Cancer Drugs 3(5):525–530

    CAS  PubMed  Google Scholar 

  • Karhu T, Akiyama K, Vuolteenaho O, Bergmann U, Naito T, Tatemoto K, Herzig KH (2017) Mast cell degranulation via MRGPRX2 by isolated human albumin fragments. Biochim Biophys Acta Gen Subj 1861(11 Pt A):2530–2534

    CAS  PubMed  Google Scholar 

  • Kashem SW, Subramanian H, Collington SJ, Magotti P, Lambris JD, Ali H (2011) G protein coupled receptor specificity for C3a and compound 48/80-induced degranulation in human mast cells: roles of mas-related genes MrgX1 and MrgX2. Eur J Pharmacol 668(1–2):299–304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katada T (2012) The inhibitory G protein G(i) identified as pertussis toxin-catalyzed ADP-ribosylation. Biol Pharm Bull 35(12):2103–2111

    CAS  PubMed  Google Scholar 

  • Katritch V, Cherezov V, Stevens RC (2012) Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol Sci 33(1):17–27

    CAS  PubMed  Google Scholar 

  • Katz MD, Erstad BL (1989) Octreotide, a new somatostatin analogue. Clin Pharm 8(4):255–273

    CAS  PubMed  Google Scholar 

  • Kempkes C, Buddenkotte J, Cevikbas F, Buhl T, Steinhoff M (2014) Role of PAR-2 in neuroimmune communication and itch. In: Carstens E, Akiyama T (eds) Itch: mechanisms and treatment. Boca Raton

    Google Scholar 

  • Kim DH, Jung WS, Kim ME, Lee HW, Youn HY, Seon JK, Lee HN, Lee JS (2014) Genistein inhibits proinflammatory cytokines in human mast cell activation through the inhibition of the ERK pathway. Int J Mol Med 34(6):1669–1674

    CAS  PubMed  Google Scholar 

  • Kinhult J, Andersson JA, Uddman R, Stjarne P, Cardell LO (2000) Pituitary adenylate cyclase-activating peptide 38 a potent endogenously produced dilator of human airways. Eur Respir J 15(2):243–247

    CAS  PubMed  Google Scholar 

  • Knowles SR, Shear NH (1995) Anaphylaxis from bacitracin and polymyxin B (Polysporin) ointment. Int J Dermatol 34(8):572–573

    CAS  PubMed  Google Scholar 

  • Kobayashi JI, Hirasawa Y, Yoshida N, Morita H (2000) Complanadine A, a new dimeric alkaloid from Lycopodium complanatum. Tetrahedron Lett 41(18):9069–9073

    CAS  Google Scholar 

  • Kokryakov VN, Harwig SS, Panyutich EA, Shevchenko AA, Aleshina GM, Shamova OV, Korneva HA, Lehrer RI (1993) Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett 327(2):231–236

    CAS  PubMed  Google Scholar 

  • Kuehn HS, Beaven MA, Ma HT, Kim MS, Metcalfe DD, Gilfillan AM (2008) Synergistic activation of phospholipases Cgamma and Cbeta: a novel mechanism for PI3K-independent enhancement of FcepsilonRI-induced mast cell mediator release. Cell Signal 20(4):625–636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Singh K, Duraisamy K, Ajarem J, Kwok Chong Chow B (2020) Protective effect of genistein against compound 48/80 induced anaphylactoid shock via inhibiting MAS related G protein-coupled receptor X2 (MRGPRX2). Molecules 25(5)

    Google Scholar 

  • Kuwasako K, Kitamura K, Ishiyama Y, Washimine H, Kato J, Kangawa K, Eto T (1997) Purification and characterization of PAMP-12 (PAMP[9-20]) in porcine adrenal medulla as a major endogenous biologically active peptide. FEBS Lett 414(1):105–110

    CAS  PubMed  Google Scholar 

  • Lansu K, Karpiak J, Liu J, Huang XP, McCorvy JD, Kroeze WK, Che T, Nagase H, Carroll FI, Jin J, Shoichet BK, Roth BL (2017) In silico design of novel probes for the atypical opioid receptor MRGPRX2. Nat Chem Biol 13(5):529–536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee W, Lee DG (2014) Magainin 2 induces bacterial cell death showing apoptotic properties. Curr Microbiol 69(6):794–801

    CAS  PubMed  Google Scholar 

  • Lehrer RI, Cole AM, Selsted ME (2012) Theta-Defensins: cyclic peptides with endless potential. J Biol Chem 287(32):27014–27019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lennartsson J, Ronnstrand L (2012) Stem cell factor receptor/c-kit: from basic science to clinical implications. Physiol Rev 92(4):1619–1649

    CAS  PubMed  Google Scholar 

  • Leszczynski D, Dunsky K, Josephs MD, Zhao Y, Foegh ML (1995) Angiopeptin, a somatostatin-14 analogue, decreases adhesiveness of rat leukocytes to unstimulated and IL-1 beta-activated rat heart endothelial cells. Life Sci 57(15):PL217–PL223

    CAS  PubMed  Google Scholar 

  • Liang HJ, Suk FM, Wang CK, Hung LF, Liu DZ, Chen NQ, Chen YC, Chang CC, Liang YC (2009) Osthole, a potential antidiabetic agent, alleviates hyperglycemia in db/db mice. Chem Biol Interact 181(3):309–315

    CAS  PubMed  Google Scholar 

  • Liu R, Che D, Zhao T, Pundir P, Cao J, Lv Y, Wang J, Ma P, Fu J, Wang N, Wang X, Zhang T, Dong X, He L (2017) MRGPRX2 is essential for sinomenine hydrochloride induced anaphylactoid reactions. Biochem Pharmacol 146:214–223

    CAS  PubMed  Google Scholar 

  • Liu FC, Wang CC, Lu JW, Lee CH, Chen SC, Ho YJ, Peng YJ (2019) Chondroprotective effects of Genistein against osteoarthritis induced joint inflammation. Nutrients 11(5)

    Google Scholar 

  • Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ (1990) Beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science 248(4962):1547–1550

    CAS  PubMed  Google Scholar 

  • Lu L, Parmar MB, Kulka M, Kwan P, Unsworth LD (2018) Self-assembling peptide Nanoscaffold that activates human mast cells. ACS Appl Mater Interfaces 10(7):6107–6117

    CAS  PubMed  Google Scholar 

  • Lumry WR, Li HH, Levy RJ, Potter PC, Farkas H, Moldovan D, Riedl M, Li H, Craig T, Bloom BJ, Reshef A (2011) Randomized placebo-controlled trial of the bradykinin B(2) receptor antagonist icatibant for the treatment of acute attacks of hereditary angioedema: the FAST-3 trial. Ann Allergy Asthma Immunol 107(6):529–537

    CAS  PubMed  Google Scholar 

  • Mahata M, Mahata SK, Parmer RJ, O’Connor DT (1998) Proadrenomedullin N-terminal 20 peptide: minimal active region to regulate nicotinic receptors. Hypertension 32(5):907–916

    CAS  PubMed  Google Scholar 

  • Manorak W, Idahosa C, Gupta K, Roy S, Panettieri R Jr, Ali H (2018) Upregulation of mas-related G protein coupled receptor X2 in asthmatic lung mast cells and its activation by the novel neuropeptide hemokinin-1. Respir Res 19(1):1

    PubMed  PubMed Central  Google Scholar 

  • Marone G, Stellato C, Mastronardi P, Mazzarella B (1993) Mechanisms of activation of human mast cells and basophils by general anesthetic drugs. Ann Fr Anesth Reanim 12(2):116–125

    CAS  PubMed  Google Scholar 

  • Martinez EA (2002) Neuromuscular blocking agents. Vet Clin North Am Equine Pract 18(1):181–188

    PubMed  Google Scholar 

  • Mascarenhas NL, Wang Z, Chang YL, Di Nardo A (2017) TRPV4 mediates mast cell activation in cathelicidin-induced Rosacea inflammation. J Invest Dermatol 137(4):972–975

    CAS  PubMed  Google Scholar 

  • Mashaghi A, Marmalidou A, Tehrani M, Grace PM, Pothoulakis C, Dana R (2016) Neuropeptide substance P and the immune response. Cell Mol Life Sci 73(22):4249–4264

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGee EU, Samuel E, Boronea B, Dillard N, Milby MN, Lewis SJ (2019) Quinolone allergy. Pharmacy (Basel) 7(3)

    Google Scholar 

  • McNeil BD, Pundir P, Meeker S, Han L, Undem BJ, Kulka M, Dong X (2015) Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 519(7542):237–241

    CAS  PubMed  Google Scholar 

  • Meixiong J, Anderson M, Limjunyawong N, Sabbagh MF, Hu E, Mack MR, Oetjen LK, Wang F, Kim BS, Dong X (2019) Activation of mast-cell-expressed mas-related G-protein-coupled receptors drives non-histaminergic itch. Immunity 50(5):1163–1171.e1165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mercado J, Baylie R, Navedo MF, Yuan C, Scott JD, Nelson MT, Brayden JE, Santana LF (2014) Local control of TRPV4 channels by AKAP150-targeted PKC in arterial smooth muscle. J Gen Physiol 143(5):559–575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moller K, Zhang YZ, Hakanson R, Luts A, Sjolund B, Uddman R, Sundler F (1993) Pituitary adenylate cyclase activating peptide is a sensory neuropeptide: immunocytochemical and immunochemical evidence. Neuroscience 57(3):725–732

    CAS  PubMed  Google Scholar 

  • Moon TC, Lee E, Baek SH, Murakami M, Kudo I, Kim NS, Lee JM, Min HK, Kambe N, Chang HW (2003) Degranulation and cytokine expression in human cord blood-derived mast cells cultured in serum-free medium with recombinant human stem cell factor. Mol Cell 16(2):154–160

    CAS  Google Scholar 

  • Mori K, Maru C, Takasuna K (2000a) Characterization of histamine release induced by fluoroquinolone antibacterial agents in-vivo and in-vitro. J Pharm Pharmacol 52(5):577–584

    CAS  PubMed  Google Scholar 

  • Mori K, Maru C, Takasuna K, Furuhama K (2000b) Mechanism of histamine release induced by levofloxacin, a fluoroquinolone antibacterial agent. Eur J Pharmacol 394(1):51–55

    CAS  PubMed  Google Scholar 

  • Mousli M, Bronner C, Bueb JL, Tschirhart E, Gies JP, Landry Y (1989) Activation of rat peritoneal mast cells by substance P and mastoparan. J Pharmacol Exp Ther 250(1):329–335

    CAS  PubMed  Google Scholar 

  • Mukai H, Kikuchi M, Suzuki Y, Munekata E (2007) A mastoparan analog without lytic effects and its stimulatory mechanisms in mast cells. Biochem Biophys Res Commun 362(1):51–55

    CAS  PubMed  Google Scholar 

  • Mukai H, Suzuki Y, Kiso Y, Munekata E (2008) Elucidation of structural requirements of mastoparan for mast cell activation-toward the comprehensive prediction of cryptides acting on mast cells. Protein Pept Lett 15(9):931–937

    CAS  PubMed  Google Scholar 

  • Mukai K, Tsai M, Saito H, Galli SJ (2018) Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev 282(1):121–150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagami H, Nishikawa T, Tamura N, Maeda A, Hibino H, Mochizuki M, Shimosato T, Moriya T, Morishita R, Tamai K, Tomono K, Kaneda Y (2012) Modification of a novel angiogenic peptide, AG30, for the development of novel therapeutic agents. J Cell Mol Med 16(7):1629–1639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakao S, Komagoe K, Inoue T, Katsu T (2011) Comparative study of the membrane-permeabilizing activities of mastoparans and related histamine-releasing agents in bacteria, erythrocytes, and mast cells. Biochim Biophys Acta 1808(1):490–497

    CAS  PubMed  Google Scholar 

  • Nazarov PG, Pronina AP (2012) The influence of cholinergic agents on histamine release from HMC-1 human mast cell line stimulated with IgG, C-reactive protein and compound 48/80. Life Sci 91(21-22):1053–1057

    CAS  PubMed  Google Scholar 

  • Niina H, Kobayashi H, Kitamura K, Katoh F, Eto T, Wada A (1995) Inhibition of catecholamine synthesis by proadrenomedullin N-terminal 20 peptide in cultured bovine adrenal medullary cells. Eur J Pharmacol 286(1):95–97

    CAS  PubMed  Google Scholar 

  • Niyonsaba F, Iwabuchi K, Someya A, Hirata M, Matsuda H, Ogawa H, Nagaoka I (2002) A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology 106(1):20–26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niyonsaba F, Ushio H, Hara M, Yokoi H, Tominaga M, Takamori K, Kajiwara N, Saito H, Nagaoka I, Ogawa H, Okumura K (2010) Antimicrobial peptides human beta-defensins and cathelicidin LL-37 induce the secretion of a pruritogenic cytokine IL-31 by human mast cells. J Immunol 184(7):3526–3534

    CAS  PubMed  Google Scholar 

  • Niyonsaba F, Song P, Yue H, Sutthammikorn N, Umehara Y, Okumura K, Ogawa H (2019) Antimicrobial peptide derived from insulin-like growth factor-binding protein 5 activates mast cells via mas-related G protein-coupled receptor X2. Allergy

    Google Scholar 

  • Ogasawara H, Furuno M, Edamura K, Noguchi M (2019) Novel MRGPRX2 antagonists inhibit IgE-independent activation of human umbilical cord blood-derived mast cells. J Leukoc Biol 106(5):1069–1077

    CAS  PubMed  Google Scholar 

  • Okayama Y, Saito H, Ra C (2008) Targeting human mast cells expressing g-protein-coupled receptors in allergic diseases. Allergol Int 57(3):197–203

    CAS  PubMed  Google Scholar 

  • Osaki T, Sasaki K, Minamino N (2011) Peptidomics-based discovery of an antimicrobial peptide derived from insulin-like growth factor-binding protein 5. J Proteome Res 10(4):1870–1880

    CAS  PubMed  Google Scholar 

  • Park KH, Park J, Koh D, Lim Y (2002) Effect of saikosaponin-A, a triterpenoid glycoside, isolated from Bupleurum falcatum on experimental allergic asthma. Phytother Res 16(4):359–363

    CAS  PubMed  Google Scholar 

  • Paton WD (1951) Compound 48/80: a potent histamine liberator. Br J Pharmacol Chemother 6(3):499–508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen SH, la Cour SH, Calloe K, Hauser F, Olesen J, Klaerke DA, Jansen-Olesen I (2019) PACAP-38 and PACAP(6-38) Degranulate rat meningeal mast cells via the orphan MrgB3-receptor. Front Cell Neurosci 13:114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pojawa-Golab M, Jaworecka K, Reich A (2019) NK-1 receptor antagonists and pruritus: review of current literature. Dermatol Ther (Heidelb) 9(3):391–405

    Google Scholar 

  • Prakash A, Goa KL (1999) Sermorelin: a review of its use in the diagnosis and treatment of children with idiopathic growth hormone deficiency. BioDrugs 12(2):139–157

    CAS  PubMed  Google Scholar 

  • Qian L, Xu Z, Zhang W, Wilson B, Hong JS, Flood PM (2007) Sinomenine, a natural dextrorotatory morphinan analog, is anti-inflammatory and neuroprotective through inhibition of microglial NADPH oxidase. J Neuroinflammation 4:23

    PubMed  PubMed Central  Google Scholar 

  • Qiao C, Hu S, Che D, Wang J, Gao J, Ma R, Jiang W, Zhang T, Liu R (2020) The anti-anaphylactoid effects of Piperine through regulating MAS-related G protein-coupled receptor X2 activation. Phytother Res 34(6):1409–1420

    CAS  PubMed  Google Scholar 

  • Reglodi D, Tamas A, Jungling A, Vaczy A, Rivnyak A, Fulop BD, Szabo E, Lubics A, Atlasz T (2018) Protective effects of pituitary adenylate cyclase activating polypeptide against neurotoxic agents. Neurotoxicology 66:185–194

    CAS  PubMed  Google Scholar 

  • Ridiandries A, Tan JTM, Bursill CA (2018) The role of chemokines in wound healing. Int J Mol Sci 19(10)

    Google Scholar 

  • Robas N, Mead E, Fidock M (2003) MrgX2 is a high potency cortistatin receptor expressed in dorsal root ganglion. J Biol Chem 278(45):44400–44404

    CAS  PubMed  Google Scholar 

  • Rothschild AM (1970) Mechanisms of histamine release by compound 48-80. Br J Pharmacol 38(1):253–262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roy S, Ganguly A, Haque M, Ali H (2019a) Angiogenic host defense peptide AG-30/5C and Bradykinin B2 receptor antagonist Icatibant are G protein biased agonists for MRGPRX2 in mast cells. J Immunol 202(4):1229–1238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roy S, Gupta K, Ganguly A, Ali H (2019b) Beta-Arrestin2 expressed in mast cells regulates ciprofloxacin-induced pseudoallergy and IgE-mediated anaphylaxis. J Allergy Clin Immunol 144(2):603–606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sachs B, Riegel S, Seebeck J, Beier R, Schichler D, Barger A, Merk HF, Erdmann S (2006) Fluoroquinolone-associated anaphylaxis in spontaneous adverse drug reaction reports in Germany: differences in reporting rates between individual fluoroquinolones and occurrence after first-ever use. Drug Saf 29(11):1087–1100

    CAS  PubMed  Google Scholar 

  • Sahin K, Yenice E, Bilir B, Orhan C, Tuzcu M, Sahin N, Ozercan IH, Kabil N, Ozpolat B, Kucuk O (2019) Genistein prevents development of spontaneous ovarian Cancer and inhibits tumor growth in hen model. Cancer Prev Res (Phila) 12(3):135–146

    CAS  Google Scholar 

  • Sanjel B, Maeng HJ, Shim WS (2019) BAM8-22 and its receptor MRGPRX1 may attribute to cholestatic pruritus. Sci Rep 9(1):10888

    PubMed  PubMed Central  Google Scholar 

  • Schneider H, Cohen-Dayag A, Pecht I (1992) Tyrosine phosphorylation of phospholipase C gamma 1 couples the Fc epsilon receptor mediated signal to mast cells secretion. Int Immunol 4(4):447–453

    CAS  PubMed  Google Scholar 

  • Schytz HW, Birk S, Wienecke T, Kruuse C, Olesen J, Ashina M (2009) PACAP38 induces migraine-like attacks in patients with migraine without aura. Brain 132(Pt 1):16–25

    PubMed  Google Scholar 

  • Scott RW, Tew GN (2017) Mimics of host defense proteins; strategies for translation to therapeutic applications. Curr Top Med Chem 17(5):576–589

    CAS  PubMed  Google Scholar 

  • Seifert R, Strasser A, Schneider EH, Neumann D, Dove S, Buschauer A (2013) Molecular and cellular analysis of human histamine receptor subtypes. Trends Pharmacol Sci 34(1):33–58

    CAS  PubMed  Google Scholar 

  • Shimosawa T, Ito Y, Ando K, Kitamura K, Kangawa K, Fujita T (1995) Proadrenomedullin NH(2)-terminal 20 peptide, a new product of the adrenomedullin gene, inhibits norepinephrine overflow from nerve endings. J Clin Invest 96(3):1672–1676

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JS, Lefkowitz RJ, Rajagopal S (2018) Biased signalling: from simple switches to allosteric microprocessors. Nat Rev Drug Discov 17(4):243–260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solinski HJ, Petermann F, Rothe K, Boekhoff I, Gudermann T, Breit A (2013) Human mas-related G protein-coupled receptors-X1 induce chemokine receptor 2 expression in rat dorsal root ganglia neurons and release of chemokine ligand 2 from the human LAD-2 mast cell line. PLoS One 8(3):e58756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solinski HJ, Gudermann T, Breit A (2014) Pharmacology and signaling of MAS-related G protein-coupled receptors. Pharmacol Rev 66(3):570–597

    PubMed  Google Scholar 

  • Spoerl D, Nigolian H, Czarnetzki C, Harr T (2017) Reclassifying anaphylaxis to neuromuscular blocking agents based on the presumed Patho-mechanism: IgE-mediated, pharmacological adverse reaction or “innate hypersensitivity”? Int J Mol Sci 18(6)

    Google Scholar 

  • Srinivasan K (2007) Black pepper and its pungent principle-piperine: a review of diverse physiological effects. Crit Rev Food Sci Nutr 47(8):735–748

    CAS  PubMed  Google Scholar 

  • St John AL, Rathore AP, Yap H, Ng ML, Metcalfe DD, Vasudevan SG, Abraham SN (2011) Immune surveillance by mast cells during dengue infection promotes natural killer (NK) and NKT-cell recruitment and viral clearance. Proc Natl Acad Sci U S A 108(22):9190–9195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steinhoff M, Vergnolle N, Young SH, Tognetto M, Amadesi S, Ennes HS, Trevisani M, Hollenberg MD, Wallace JL, Caughey GH, Mitchell SE, Williams LM, Geppetti P, Mayer EA, Bunnett NW (2000) Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med 6(2):151–158

    CAS  PubMed  Google Scholar 

  • Subramanian H, Gupta K, Guo Q, Price R, Ali H (2011a) Mas-related gene X2 (MrgX2) is a novel G protein-coupled receptor for the antimicrobial peptide LL-37 in human mast cells: resistance to receptor phosphorylation, desensitization, and internalization. J Biol Chem 286(52):44739–44749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian H, Kashem SW, Collington SJ, Qu H, Lambris JD, Ali H (2011b) PMX-53 as a dual CD88 antagonist and an agonist for mas-related gene 2 (MrgX2) in human mast cells. Mol Pharmacol 79(6):1005–1013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian H, Gupta K, Lee D, Bayir AK, Ahn H, Ali H (2013) Beta-defensins activate human mast cells via mas-related gene X2. J Immunol 191(1):345–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian H, Gupta K, Ali H (2016) Roles of mas-related G protein-coupled receptor X2 on mast cell-mediated host defense, pseudoallergic drug reactions, and chronic inflammatory diseases. J Allergy Clin Immunol 138(3):700–710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugihara N, Arakawa T, Ohnishi M, Furuno K (1999) Anti- and pro-oxidative effects of flavonoids on metal-induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with alpha-linolenic acid. Free Radic Biol Med 27(11–12):1313–1323

    CAS  PubMed  Google Scholar 

  • Sumpter TL, Ho CH, Pleet AR, Tkacheva OA, Shufesky WJ, Rojas-Canales DM, Morelli AE, Larregina AT (2015) Autocrine hemokinin-1 functions as an endogenous adjuvant for IgE-mediated mast cell inflammatory responses. J Allergy Clin Immunol 135(4):1019–1030.e1018

    CAS  PubMed  Google Scholar 

  • Suzuki R, Kimura T, Kitaichi K, Tatsumi Y, Matsushima M, Zhao YL, Shibata E, Baba K, Hasegawa T, Takagi K (2002) Platelet factor 4 fragment induces histamine release from rat peritoneal mast cells. Peptides 23(10):1713–1717

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Liu S, Ogasawara T, Sawasaki T, Takasaki Y, Yorozuya T, Mogi M (2020) A novel MRGPRX2-targeting antagonistic DNA aptamer inhibits histamine release and prevents mast cell-mediated anaphylaxis. Eur J Pharmacol 878:173104

    CAS  PubMed  Google Scholar 

  • Swayzer DV, Gerriets V (2019) Leuprolide, StatPearls, Treasure Island

    Google Scholar 

  • Tatemoto K, Nozaki Y, Tsuda R, Konno S, Tomura K, Furuno M, Ogasawara H, Edamura K, Takagi H, Iwamura H, Noguchi M, Naito T (2006) Immunoglobulin E-independent activation of mast cell is mediated by Mrg receptors. Biochem Biophys Res Commun 349(4):1322–1328

    CAS  PubMed  Google Scholar 

  • Tatemoto K, Nozaki Y, Tsuda R, Kaneko S, Tomura K, Furuno M, Ogasawara H, Edamura K, Takagi H, Iwamura H, Noguchi M, Naito T (2018) Endogenous protein and enzyme fragments induce immunoglobulin E-independent activation of mast cells via a G protein-coupled receptor, MRGPRX2. Scand J Immunol 87(5):e12655

    CAS  PubMed  Google Scholar 

  • Tostivint H, Lihrmann I, Bucharles C, Vieau D, Coulouarn Y, Fournier A, Conlon JM, Vaudry H (1996) Occurrence of two somatostatin variants in the frog brain: characterization of the cDNAs, distribution of the mRNAs, and receptor-binding affinities of the peptides. Proc Natl Acad Sci U S A 93(22):12605–12610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tur-Kaspa I, Ezcurra D (2009) GnRH antagonist, cetrorelix, for pituitary suppression in modern, patient-friendly assisted reproductive technology. Expert Opin Drug Metab Toxicol 5(10):1323–1336

    CAS  PubMed  Google Scholar 

  • Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL, Christopoulos A, Sexton PM, Miller KJ, Spedding M, Mailman RB (2007) Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 320(1):1–13

    CAS  PubMed  Google Scholar 

  • Waalkens DH, Joosten HF, Taalman RD, Scheres JM, Yih TD, Hoekstra A (1981) Sister-chromatid exchanges induced in vitro by cyclophosphamide without exogenous metabolic activation in lymphocytes from three mammalian species. Toxicol Lett 7(3):229–232

    CAS  PubMed  Google Scholar 

  • Wang N, Liu R, Liu Y, Zhang R, He L (2016) Sinomenine potentiates P815 cell degranulation via upregulation of Ca2+ mobilization through the Lyn/PLCgamma/IP3R pathway. Int J Immunopathol Pharmacol 29(4):676–683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N, Che D, Zhang T, Liu R, Cao J, Wang J, Zhao T, Ma P, Dong X, He L (2018) Saikosaponin A inhibits compound 48/80-induced pseudo-allergy via the Mrgprx2 pathway in vitro and in vivo. Biochem Pharmacol 148:147–154

    CAS  PubMed  Google Scholar 

  • Wang F, Yao X, Zhang Y, Tang J (2019a) Synthesis, biological function and evaluation of Shikonin in cancer therapy. Fitoterapia 134:329–339

    CAS  PubMed  Google Scholar 

  • Wang Z, Guhl S, Franke K, Artuc M, Zuberbier T, Babina M (2019b) IL-33 and MRGPRX2-triggered activation of human skin mast cells-elimination of receptor expression on chronic exposure, but reinforced degranulation on acute priming. Cell 8(4)

    Google Scholar 

  • Wang J, Zhang Y, Li C, Ding Y, Hu S, An H (2020a) Inhibitory function of Shikonin on MRGPRX2-mediated pseudo-allergic reactions induced by the secretagogue. Phytomedicine 68:153149

    CAS  PubMed  Google Scholar 

  • Wang J, Zhang Y, Liu R, Zhang G, Dong K, Zhang T (2020b) Paeoniflorin inhibits MRGPRX2-mediated pseudo-allergic reaction via calcium signaling pathway. Phytother Res 34(2):401–408

    CAS  PubMed  Google Scholar 

  • Weinberg A, Jin G, Sieg S, McCormick TS (2012) The yin and yang of human beta-defensins in health and disease. Front Immunol 3:294

    PubMed  PubMed Central  Google Scholar 

  • Werle E, Trautschold I (1963) Kallikrein, kallidin, kallikrein inhibitors. Ann N Y Acad Sci 104:117–129

    CAS  PubMed  Google Scholar 

  • Wershil BK, Turck CW, Sreedharan SP, Yang J, An S, Galli SJ, Goetzl EJ (1993) Variants of vasoactive intestinal peptide in mouse mast cells and rat basophilic leukemia cells. Cell Immunol 151(2):369–378

    CAS  PubMed  Google Scholar 

  • Wojta J, Kaun C, Zorn G, Ghannadan M, Hauswirth AW, Sperr WR, Fritsch G, Printz D, Binder BR, Schatzl G, Zwirner J, Maurer G, Huber K, Valent P (2002) C5a stimulates production of plasminogen activator inhibitor-1 in human mast cells and basophils. Blood 100(2):517–523

    CAS  PubMed  Google Scholar 

  • Wu H, Zeng M, Cho EY, Jiang W, Sha O (2015) The origin, expression, function and future research focus of a G protein-coupled receptor, mas-related gene X2 (MrgX2). Prog Histochem Cytochem 50(1–2):11–17

    PubMed  Google Scholar 

  • Yaksh TL, Eddinger KA, Kokubu S, Wang Z, DiNardo A, Ramachandran R, Zhu Y, He Y, Weren F, Quang D, Malkmus SA, Lansu K, Kroeze WK, Eliceiri B, Steinauer JJ, Schiller PW, Gmeiner P, Page LM, Hildebrand KR (2019) Mast cell degranulation and fibroblast activation in the morphine-induced spinal mass: role of mas-related G protein-coupled receptor signaling. Anesthesiology 131(1):132–147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan H, Hancock RE (2001) Synergistic interactions between mammalian antimicrobial defense peptides. Antimicrob Agents Chemother 45(5):1558–1560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Ren Y, Lou ZG, Wan X, Weng GB, Cen D (2018) Paeoniflorin inhibits the growth of bladder carcinoma via deactivation of STAT3. Acta Pharma 68(2):211–222

    Google Scholar 

  • Yeh CM, Lin YJ, Hsu TH, Ruan T (2018) Genistein suppressing the ROS-induced hypersensitivity of rat vagal lung C-fiber afferents through an ERalpha-mediated mechanism. Chin J Physiol 61(1):14–24

    CAS  PubMed  Google Scholar 

  • Yibin G, Jiang Z, Hong Z, Gengfa L, Liangxi W, Guo W, Yongling L (2005) A synthesized cationic tetradecapeptide from hornet venom kills bacteria and neutralizes lipopolysaccharide in vivo and in vitro. Biochem Pharmacol 70(2):209–219

    PubMed  Google Scholar 

  • Yu Y, Blokhuis BR, Garssen J, Redegeld FA (2016) Non-IgE mediated mast cell activation. Eur J Pharmacol 778:33–43

    CAS  PubMed  Google Scholar 

  • Yu Y, Zhang Y, Zhang Y, Lai Y, Chen W, Xiao Z, Zhang W, Jin M, Yu B (2017) LL-37-induced human mast cell activation through G protein-coupled receptor MrgX2. Int Immunopharmacol 49:6–12

    CAS  PubMed  Google Scholar 

  • Zhan Y, Ma N, Liu R, Wang N, Zhang T, He L (2019) Polymyxin B and polymyxin E induce anaphylactoid response through mediation of mas-related G protein-coupled receptor X2. Chem Biol Interact 308:304–311

    CAS  PubMed  Google Scholar 

  • Zhao XX, Peng C, Zhang H, Qin LP (2012) Sinomenium acutum: a review of chemistry, pharmacology, pharmacokinetics, and clinical use. Pharm Biol 50(8):1053–1061

    PubMed  Google Scholar 

  • Zhou X, Cheng H, Xu D, Yin Q, Cheng L, Wang L, Song S, Zhang M (2014) Attenuation of neuropathic pain by saikosaponin a in a rat model of chronic constriction injury. Neurochem Res 39(11):2136–2142

    CAS  PubMed  Google Scholar 

  • Zylka MJ, Dong X, Southwell AL, Anderson DJ (2003) Atypical expansion in mice of the sensory neuron-specific Mrg G protein-coupled receptor family. Proc Natl Acad Sci U S A 100(17):10043–10048

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research by the authors was funded by National Natural Science Foundation of China (No.81803647) and China Scholarship Council (No. 201906285028).

Competing Interests

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Ni Mi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mi, YN., Ping, NN., Cao, YX. (2020). Ligands and Signaling of Mas-Related G Protein-Coupled Receptor-X2 in Mast Cell Activation. In: Pedersen, S.H.F. (eds) Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 179. Springer, Cham. https://doi.org/10.1007/112_2020_53

Download citation

Publish with us

Policies and ethics