Skip to main content

Ion Channel Profiling in Prostate Cancer: Toward Cell Population-Specific Screening

  • Chapter
  • First Online:
Transportome Malfunction in the Cancer Spectrum

Abstract

In the last three decades, a growing number of studies have implicated ion channels in all essential processes of prostate carcinogenesis, including cell proliferation, apoptosis, migration, and angiogenesis. The changes in the expression of individual ion channels show a specific profile, making these proteins promising clinical biomarkers that may enable better molecular subtyping of the disease and lead to more rapid and accurate clinical decision-making. Expression profiles and channel function are mainly based on the tumoral tissue itself, in this case, the epithelial cancer cell population. To date, little data on the ion channel profile of the cancerous prostate stroma are available, even though tumor interactions with the microenvironment are crucial in carcinogenesis and each distinct population plays a specific role in tumor progression. In this review, we describe ion channel expression profiles specific for the distinct cell population of the tumor microenvironment (stromal, endothelial, neuronal, and neuroendocrine cell populations) and the technical approaches used for efficient separation and screening of these cell populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alphonso A, Alahari SK (2009) Stromal cells and integrins: conforming to the needs of the tumor microenvironment. Neoplasia 11(12):1264–1271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aragon-Ching JB, Madan RA, Dahut WL (2010) Angiogenesis inhibition in prostate cancer: current uses and future promises. J Oncol 2010:361836

    PubMed  PubMed Central  Google Scholar 

  • Bai VU, Murthy S, Chinnakannu K, Muhletaler F, Tejwani S, Barrack ER et al (2010) Androgen regulated TRPM8 expression: a potential mRNA marker for metastatic prostate cancer detection in body fluids. Int J Oncol 36(2):443–450

    CAS  PubMed  Google Scholar 

  • Bernardini M, Brossa A, Chinigo G, Grolez GP, Trimaglio G, Allart L et al (2019) Transient receptor potential channel expression signatures in tumor-derived endothelial cells: functional roles in prostate cancer angiogenesis. Cancers 11(7):E956

    PubMed  Google Scholar 

  • Berry PA, Birnie R, Droop AP, Maitland NJ, Collins AT (2011) The calcium sensor STIM1 is regulated by androgens in prostate stromal cells. Prostate 71(15):1646–1655

    CAS  PubMed  Google Scholar 

  • Bidaux G, Flourakis M, Thebault S, Zholos A, Beck B, Gkika D et al (2007) Prostate cell differentiation status determines transient receptor potential melastatin member 8 channel subcellular localization and function. J Clin Invest 117(6):1647–1657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bloch M, Ousingsawat J, Simon R, Schraml P, Gasser TC, Mihatsch MJ et al (2007) KCNMA1 gene amplification promotes tumor cell proliferation in human prostate cancer. Oncogene 26(17):2525–2534

    CAS  PubMed  Google Scholar 

  • Bray M-A, Singh S, Han H, Davis CT, Borgeson B, Hartland C et al (2016) Cell painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat Protoc 11(9):1757–1774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brizzi MF, Tarone G, Defilippi P (2012) Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr Opin Cell Biol 24(5):645–651

    CAS  PubMed  Google Scholar 

  • Bussolati B, Grange C, Camussi G (2011) Tumor exploits alternative strategies to achieve vascularization. FASEB J 25(9):2874–2882

    CAS  PubMed  Google Scholar 

  • Caprodossi S, Lucciarini R, Amantini C, Nabissi M, Canesin G, Ballarini P et al (2007) Transient receptor potential vanilloid type 2 (TRPV2) expression in normal urothelium and in urothelial carcinoma of human bladder: correlation with the pathologic stage. Eur Urol 54(3):612–620

    PubMed  Google Scholar 

  • Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10(6):417–427

    CAS  PubMed  Google Scholar 

  • Cunha GR, Hayward SW, Wang YZ (2002) Role of stroma in carcinogenesis of the prostate. Differentiation 70(9):473–485

    PubMed  Google Scholar 

  • Cunha GR, Hayward SW, Wang YZ, Ricke WA (2003) Role of the stromal microenvironment in carcinogenesis of the prostate. Int J Cancer 107(1):1–10

    CAS  PubMed  Google Scholar 

  • Dakhova O, Ozen M, Creighton CJ, Li R, Ayala G, Rowley D et al (2009) Global gene expression analysis of reactive stroma in prostate cancer. Clin Cancer Res 15(12):3979–3989

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Bock K, Cauwenberghs S, Carmeliet P (2011) Vessel abnormalization: another hallmark of cancer? Molecular mechanisms and therapeutic implications. Curr Opin Genet Dev 21(1):73–79

    PubMed  Google Scholar 

  • Derouiche S, Mariot P, Warnier M, Vancauwenberghe E, Bidaux G, Gosset P et al (2017) Activation of TRPA1 channel by antibacterial agent triclosan induces VEGF secretion in human prostate cancer stromal cells. Cancer Prev Res 10(3):177–187

    CAS  Google Scholar 

  • Domazet B, Maclennan GT, Lopez-Beltran A, Montironi R, Cheng L (2008) Laser capture microdissection in the genomic and proteomic era: targeting the genetic basis of cancer. Int J Clin Exp Pathol 1(6):475–488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du C, Zheng Z, Li D, Chen L, Li N, Yi X et al (2016) BKCa promotes growth and metastasis of prostate cancer through facilitating the coupling between αvβ3 integrin and FAK. Oncotarget 7(26):40174–40188

    PubMed  PubMed Central  Google Scholar 

  • Dubois C, Vanden Abeele F, Lehen’kyi V, Gkika D, Guarmit B, Lepage G et al (2014) Remodeling of channel-forming ORAI proteins determines an oncogenic switch in prostate cancer. Cancer Cell 26(1):19–32

    CAS  PubMed  Google Scholar 

  • Duranti C, Arcangeli A (2019) Ion channel targeting with antibodies and antibody fragments for cancer diagnosis. Antibodies 8(2):33

    CAS  PubMed Central  Google Scholar 

  • Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR et al (1996) Laser capture microdissection. Science 274(5289):998–1001

    CAS  PubMed  Google Scholar 

  • Faulkner S, Jobling P, March B, Jiang CC, Hondermarck H (2019) Tumor neurobiology and the war of nerves in cancer. Cancer Discov 9(6):702–710

    CAS  PubMed  Google Scholar 

  • Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M et al (2018) Cancer incidence and mortality patterns in Europe: estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer 103:356–387

    CAS  Google Scholar 

  • Fiorio Pla A, Grange C, Antoniotti S, Tomatis C, Merlino A, Bussolati B et al (2008) Arachidonic acid-induced Ca2+ entry is involved in early steps of tumor angiogenesis. Mol Cancer Res 6(4):535–545

    PubMed  Google Scholar 

  • Fiorio Pla A, Genova T, Pupo E, Tomatis C, Genazzani A, Zaninetti R et al (2010) Multiple roles of protein kinase a in arachidonic acid-mediated Ca2+ entry and tumor-derived human endothelial cell migration. Mol Cancer Res 8(11):1466–1476

    CAS  PubMed  Google Scholar 

  • Fiorio Pla A, Brossa A, Bernardini M, Genova T, Grolez G, Villers A et al (2014) Differential sensitivity of prostate tumor derived endothelial cells to sorafenib and sunitinib. BMC Cancer 14(1):939

    PubMed  PubMed Central  Google Scholar 

  • Fraser SP, Grimes JA, Diss JKJ, Stewart D, Dolly JO, Djamgoz MBA (2003) Predominant expression of Kv1.3 voltage-gated K+ channel subunit in rat prostate cancer cell lines: electrophysiological, pharmacological and molecular characterisation. Pflugers Arch 446(5):559–571

    CAS  PubMed  Google Scholar 

  • Fukami K, Sekiguchi F, Yasukawa M, Asano E, Kasamatsu R, Ueda M et al (2015) Functional upregulation of the H2S/Cav3.2 channel pathway accelerates secretory function in neuroendocrine-differentiated human prostate cancer cells. Biochem Pharmacol 97(3):300–309

    CAS  PubMed  Google Scholar 

  • Gackière F, Bidaux G, Delcourt P, Van Coppenolle F, Katsogiannou M, Dewailly E et al (2008) CaV3.2 T-type calcium channels are involved in calcium-dependent secretion of neuroendocrine prostate cancer cells. J Biol Chem 283(15):10162–10173

    PubMed  Google Scholar 

  • Gackière F, Warnier M, Katsogiannou M, Derouiche S, Delcourt P, Dewailly E et al (2013) Functional coupling between large-conductance potassium channels and Cav3.2 voltage-dependent calcium channels participates in prostate cancer cell growth. Biol Open 2(9):941–951

    PubMed  PubMed Central  Google Scholar 

  • Gkika D, Prevarskaya N (2011) TRP channels in prostate cancer: the good, the bad and the ugly? Asian J Androl 13(May):673–676

    PubMed  PubMed Central  Google Scholar 

  • Gkika D, Flourakis M, Lemonnier L, Prevarskaya N (2010) PSA reduces prostate cancer cell motility by stimulating TRPM8 activity and plasma membrane expression. Oncogene 29(32):4611–4616

    CAS  PubMed  Google Scholar 

  • Gkika D, Lemonnier L, Shapovalov G, Gordienko D, Poux C, Bernardini M et al (2015) TRP channel-associated factors are a novel protein family that regulates TRPM8 trafficking and activity. J Cell Biol 208(1):89–107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grobholz R, Griebe M, Sauer CG, Michel MS, Trojan L, Bleyl U (2005) Influence of neuroendocrine tumor cells on proliferation in prostatic carcinoma. Hum Pathol 36(5):562–570

    CAS  PubMed  Google Scholar 

  • Gustafsdottir SM, Ljosa V, Sokolnicki KL, Anthony Wilson J, Walpita D, Kemp MM et al (2013) Multiplex cytological profiling assay to measure diverse cellular states. PLoS One 8(12):e80999. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847047/

    PubMed  PubMed Central  Google Scholar 

  • Hägglöf C, Bergh A (2012) The stroma-a key regulator in prostate function and malignancy. Cancers 4(2):531–548

    PubMed  PubMed Central  Google Scholar 

  • Hall M, Todd B, Allen ED, Nguyen N, Kwon Y-J, Nguyen V et al (2018) Androgen receptor signaling regulates T-type Ca2+ channel expression and neuroendocrine differentiation in prostate cancer cells. Am J Cancer Res 8(4):732–747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han Y, Liu C, Zhang D, Men H, Huo L, Geng Q et al (2019) Mechanosensitive ion channel Piezo1 promotes prostate cancer development through the activation of the Akt/mTOR pathway and acceleration of cell cycle. Int J Oncol 55(3):629–644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    CAS  Google Scholar 

  • Hendijani F (2017) Explant culture: an advantageous method for isolation of mesenchymal stem cells from human tissues. Cell Prolif 50(2):e12334

    PubMed Central  Google Scholar 

  • Holzmann C, Kappel S, Kilch T, Jochum MM, Urban SK, Jung V et al (2015) Transient receptor potential melastatin 4 channel contributes to migration of androgen-insensitive prostate cancer cells. Oncotarget 6(39):41783–41793

    PubMed  PubMed Central  Google Scholar 

  • Hwang C, Heath EI (2010) Angiogenesis inhibitors in the treatment of prostate cancer. J Hematol Oncol 3:26

    PubMed  PubMed Central  Google Scholar 

  • Hwang B, Lee JH, Bang D (2018) Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med 50(8):96

    PubMed Central  Google Scholar 

  • Islam S, Kjällquist U, Moliner A, Zajac P, Fan J-B, Lönnerberg P et al (2011) Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 21(7):1160–1167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Z, Wang Y, Sawyers A, Yao H, Rahmatpanah F, Xia X-Q et al (2011) Diagnosis of prostate cancer using differentially expressed genes in stroma. Cancer Res 71(7):2476–2487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaikkonen E, Rantapero T, Zhang Q, Taimen P, Laitinen V, Kallajoki M et al (2018) ANO7 is associated with aggressive prostate cancer. Int J Cancer 143(10):2479–2487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16(9):582–598

    CAS  PubMed  Google Scholar 

  • Kerbel R, Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2(10):727–739

    CAS  PubMed  Google Scholar 

  • Klein G (2014) Evolutionary aspects of cancer resistance. Semin Cancer Biol 25:10–14

    CAS  PubMed  Google Scholar 

  • Koo KM, Mainwaring PN, Tomlins SA, Trau M (2019) Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nat Rev Urol 16(5):302–317

    PubMed  Google Scholar 

  • Ku S-Y, Gleave ME, Beltran H (2019) Towards precision oncology in advanced prostate cancer. Nat Rev Urol 16(11):645–654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laragione T, Cheng KF, Tanner MR, He M, Beeton C, Al-Abed Y et al (2015) The cation channel Trpv2 is a new suppressor of arthritis severity, joint damage, and synovial fibroblast invasion. Clin Immunol 158(2):183–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lastraioli E, Iorio J, Arcangeli A (2015) Ion channel expression as promising cancer biomarker. Biochim Biophys Acta 1848(10 Pt B):2685–2702

    CAS  PubMed  Google Scholar 

  • Leão R, Domingos C, Figueiredo A, Hamilton R, Tabori U, Castelo-Branco P (2017) Cancer stem cells in prostate cancer: implications for targeted therapy. Urol Int 99(2):125–136

    PubMed  Google Scholar 

  • Li Y, Li CX, Ye H, Chen F, Melamed J, Peng Y et al (2008) Decrease in stromal androgen receptor associates with androgen-independent disease and promotes prostate cancer cell proliferation and invasion. J Cell Mol Med 12(6b):2790–2798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liao Z, Tan ZW, Zhu P, Tan NS (2019) Cancer-associated fibroblasts in tumor microenvironment – accomplices in tumor malignancy. Cell Immunol 343:103729

    CAS  PubMed  Google Scholar 

  • Lin W-W, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 117(5):1175–1183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ et al (2013) Autonomic nerve development contributes to prostate cancer progression. Science 341(6142):1236361

    PubMed  Google Scholar 

  • Mariot P, Vanoverberghe K, Lalevée N, Rossier MF, Prevarskaya N (2002) Overexpression of an α1H (Cav3.2) T-type calcium channel during neuroendocrine differentiation of human prostate cancer cells. J Biol Chem 277(13):10824–10833

    CAS  PubMed  Google Scholar 

  • Marker PC, Donjacour AA, Dahiya R, Cunha GR (2003) Hormonal, cellular, and molecular control of prostatic development. Dev Biol 253(2):165–174

    CAS  PubMed  Google Scholar 

  • Merritt CR, Ong GT, Church SE, Barker K, Danaher P, Geiss G et al (2020) Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat Biotechnol 38(5):586–599

    CAS  PubMed  Google Scholar 

  • Moccia F, Poletto V (2015) May the remodeling of the Ca2+ toolkit in endothelial progenitor cells derived from cancer patients suggest alternative targets for anti-angiogenic treatment? Biochim Biophys Acta 1853(9):1958–1973

    CAS  PubMed  Google Scholar 

  • Monet M, Lehen’kyi V, Gackiere F, Firlej V, Vandenberghe M, Roudbaraki M et al (2010) Role of cationic channel TRPV2 in promoting prostate cancer migration and progression to androgen resistance. Cancer Res 70(3):1225–1235

    CAS  PubMed  Google Scholar 

  • Olapade-Olaopa EO, MacKay EH, Taub NA, Sandhu DP, Terry TR, Habib FK (1999) Malignant transformation of human prostatic epithelium is associated with the loss of androgen receptor immunoreactivity in the surrounding stroma. Clin Cancer Res 5(3):569–576

    CAS  PubMed  Google Scholar 

  • Oulidi A, Bokhobza A, Gkika D, Vanden Abeele F, Lehen’kyi V, Ouafik L et al (2013) TRPV2 mediates adrenomedullin stimulation of prostate and urothelial cancer cell adhesion, migration and invasion. PLoS One 8(5):e64885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pla AF, Gkika D (2013) Emerging role of TRP channels in cell migration: from tumor vascularization to metastasis. Front Physiol 4(November):1–12

    Google Scholar 

  • Planche A, Bacac M, Provero P, Fusco C, Delorenzi M, Stehle J-C et al (2011) Identification of prognostic molecular features in the reactive stroma of human breast and prostate cancer. PLoS One 6(5):e18640. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3097176/

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prensner JR, Rubin MA, Wei JT, Chinnaiyan AM (2012) Beyond PSA: the next generation of prostate cancer biomarkers. Sci Transl Med 4(127):127rv3

    PubMed  PubMed Central  Google Scholar 

  • Prevarskaya N, Skryma R, Shuba Y (2018) Ion channels in cancer: are cancer hallmarks oncochannelopathies? Physiol Rev 98(2):559–621

    CAS  PubMed  Google Scholar 

  • Pupo E, Pla AF, Avanzato D, Moccia F, Cruz J-EA, Tanzi F et al (2011) Hydrogen sulfide promotes calcium signals and migration in tumor-derived endothelial cells. Free Radic Biol Med 51(9):1765–1773

    CAS  PubMed  Google Scholar 

  • Ranieri G (2012) Novel strategies in the treatment of castration-resistant prostate cancer (Review). Int J Oncol 40(5):1313–1320. http://www.spandidos-publications.com/10.3892/ijo.2012.1364

    PubMed  Google Scholar 

  • Rizaner N, Onkal R, Fraser SP, Pristerá A, Okuse K, Djamgoz MBA (2016) Intracellular calcium oscillations in strongly metastatic human breast and prostate cancer cells: control by voltage-gated sodium channel activity. Eur Biophys J 45(7):735–748

    CAS  PubMed  Google Scholar 

  • Ross T, Ahmed K, Raison N, Challacombe B, Dasgupta P (2016) Clarifying the PSA grey zone: the management of patients with a borderline PSA. Int J Clin Pract 70(11):950–959

    PubMed  Google Scholar 

  • Sagredo AI, Sagredo EA, Cappelli C, Báez P, Andaur RE, Blanco C et al (2018) TRPM4 regulates Akt/GSK3-β activity and enhances β-catenin signaling and cell proliferation in prostate cancer cells. Mol Oncol 12(2):151–165

    CAS  PubMed  Google Scholar 

  • Savage AM, Kurusamy S, Chen Y, Jiang Z, Chhabria K, MacDonald RB et al (2019) tmem33 is essential for VEGF-mediated endothelial calcium oscillations and angiogenesis. Nat Commun 10(1):732

    PubMed  PubMed Central  Google Scholar 

  • Shariat SF, Kattan MW, Vickers AJ, Karakiewicz PI, Scardino PT (2009) Critical review of prostate cancer predictive tools. Future Oncol 5(10):1555–1584

    PubMed  Google Scholar 

  • Shariat SF, Semjonow A, Lilja H, Savage C, Vickers AJ, Bjartell A (2011) Tumor markers in prostate cancer I: blood-based markers. Acta Oncol 50(Suppl 1):61–75

    PubMed  PubMed Central  Google Scholar 

  • Staunton L, Tonry C, Lis R, Espina V, Liotta L, Inzitari R et al (2017) Pathology-driven comprehensive proteomic profiling of the prostate cancer tumor microenvironment. Mol Cancer Res 15(3):281–293

    CAS  PubMed  Google Scholar 

  • Sun Y, Selvaraj S, Varma A, Derry S, Sahmoun AE, Singh BB (2013) Increase in serum Ca2+/Mg2+ ratio promotes proliferation of prostate cancer cells by activating TRPM7 channels. J Biol Chem 288(1):255–263

    CAS  PubMed  Google Scholar 

  • Sun Y, Sukumaran P, Varma A, Derry S, Sahmoun AE, Singh BB (2014) Cholesterol-induced activation of TRPM7 regulates cell proliferation, migration, and viability of human prostate cells. Biochim Biophys Acta 1843(9):1839–1850

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suy S, Hansen TP, Auto HD, Kallakury BVS, Dailey V, Danner M et al (2012) Expression of voltage-gated sodium channel Nav1.8 in human prostate cancer is associated with high histological grade. J Clin Exp Oncol 1(2). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3807742/

  • Theodoropoulos VE, Tsigka A, Mihalopoulou A, Tsoukala V, Lazaris AC, Patsouris E et al (2005) Evaluation of neuroendocrine staining and androgen receptor expression in incidental prostatic adenocarcinoma: prognostic implications. Urology 66(4):897–902

    CAS  PubMed  Google Scholar 

  • Tomlinson MJ, Tomlinson S, Yang XB, Kirkham J (2012) Cell separation: terminology and practical considerations. J Tissue Eng 4:2041731412472690. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578272/

    PubMed  PubMed Central  Google Scholar 

  • Uysal O, Sevimli T, Sevimli M, Gunes S, Sariboyaci AE (2018) Cell and tissue culture. In: Omics technologies and bio-engineering. Elsevier, Amsterdam, pp 391–429. https://linkinghub.elsevier.com/retrieve/pii/B9780128046593000178

    Google Scholar 

  • Van TM, Blank CU (2019) A user’s perspective on GeoMxTM digital spatial profiling. Immuno Oncol Technol 1:11–18

    Google Scholar 

  • Vanoverberghe K, Vanden Abeele F, Mariot P, Lepage G, Roudbaraki M, Bonnal JL et al (2004) Ca2+ homeostasis and apoptotic resistance of neuroendocrine-differentiated prostate cancer cells. Cell Death Differ 11(3):321–330

    CAS  PubMed  Google Scholar 

  • Weaver EM, Zamora FJ, Hearne JL, Martin-Caraballo M (2015) Posttranscriptional regulation of T-type Ca 2+ channel expression by interleukin-6 in prostate cancer cells. Cytokine 76(2):309–320

    CAS  PubMed  Google Scholar 

  • Webber JP, Spary LK, Mason MD, Tabi Z, Brewis IA, Clayton A (2016) Prostate stromal cell proteomics analysis discriminates normal from tumour reactive stromal phenotypes. Oncotarget 7(15):20124–20139

    PubMed  PubMed Central  Google Scholar 

  • Wellington K, Keam SJ (2006) Bicalutamide 150mg: a review of its use in the treatment of locally advanced prostate cancer. Drugs 66(6):837–850

    CAS  PubMed  Google Scholar 

  • Wissenbach U, Niemeyer BA, Fixemer T, Schneidewind A, Trost C, Cavalie A et al (2001) Expression of CaT-like, a novel calcium-selective channel, correlates with the malignancy of prostate cancer. J Biol Chem 276(22):19461–19468

    CAS  PubMed  Google Scholar 

  • Xiong Y-Q, Sun H-C, Zhang W, Zhu X-D, Zhuang P-Y, Zhang J-B et al (2009) Human hepatocellular carcinoma tumor-derived endothelial cells manifest increased angiogenesis capability and drug resistance compared with normal endothelial cells. Clin Cancer Res 15(15):4838–4846

    CAS  PubMed  Google Scholar 

  • Yokota Y, Nakajima H, Wakayama Y, Muto A, Kawakami K, Fukuhara S et al (2015) Endothelial Ca 2+ oscillations reflect VEGFR signaling-regulated angiogenic capacity in vivo. Elife 4:e08817

    PubMed  PubMed Central  Google Scholar 

  • Yu P, Ye L, Wang H, Du G, Zhang J, Zuo Y et al (2014) NSK-01105, a novel sorafenib derivative, inhibits human prostate tumor growth via suppression of VEGFR2/EGFR-mediated angiogenesis. PLoS One 9(12):e115041

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

English language, grammar, punctuation, spelling, and overall style by the highly qualified native English-speaking editors at American Journal Experts (certificate number EDCC-3B24-C703-F3F2-FDE9).

Conflict of Interest

The authors declare no conflict of interest in the manuscript.

Funding

All authors were supported by grants from the Ministère de l’Education Nationale, the Institut National de la Santé et de la Recherche Medicale (INSERM), and La Ligue contre le cancer. DG was supported by the Institut Universitaire de France (IUF). VF was supported by Institut National du Cancer (INCA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitra Gkika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farfariello, V., Prevarskaya, N., Gkika, D. (2020). Ion Channel Profiling in Prostate Cancer: Toward Cell Population-Specific Screening. In: Stock, C., Pardo, L.A. (eds) Transportome Malfunction in the Cancer Spectrum. Reviews of Physiology, Biochemistry and Pharmacology, vol 181. Springer, Cham. https://doi.org/10.1007/112_2020_22

Download citation

Publish with us

Policies and ethics