Advertisement

Curcumin as a MicroRNA Regulator in Cancer: A Review

  • Amir Abbas Momtazi
  • Fahimeh Shahabipour
  • Sepideh Khatibi
  • Thomas P. Johnston
  • Matteo Pirro
  • Amirhossein Sahebkar
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 171)

Abstract

Curcumin is a natural dietary polyphenol for which anti-tumor effects have been documented. Anti-inflammatory and antioxidant properties of curcumin, along with its immunomodulatory, proapoptotic, and antiangiogenic properties, are often referred to as the main mechanisms underlying the anti-tumor effects. At the molecular level, inhibition of NF-kB, Akt/PI3K, and MAPK pathways and enhancement of p53 are among the most important anticancer alterations induced by curcumin. Recent evidence has suggested that epigenetic alterations are also involved in the anti-tumor properties of curcumin. Among these curcumin-induced epigenetic alterations is modulation of the expression of several oncogenic and tumor suppressor microRNAs (miRNAs). Suppression of oncomiRs such as miR-21, miR-17-5p, miR-20a, and miR-27a and over-expression of miR-34 a/c and epithelial-mesenchymal transition-suppressor miRNAs are among the most important effects of curcumin on miRNA homeostasis. The present review will summarize the findings of in vitro and experimental studies on the impact of curcumin and its analogues on the expression of miRNAs involved in different stages of tumor initiation, growth, metastasis, and chemo-resistance.

Keywords

Cancer Curcumin Epigenetics miRNA Turmeric 

Abbreviations

5FUR

5-Fluorouracil resistant

Bcl-2

B cell lymphoma 2

CAM

Chick chorioallantoic membrane

CDF

Difluorinated-curcumin

ChIP

Chromatin immuno precipitation

CR

Chemo-resistant

CS

Chemo-sensitive

CSC

Cancer stem cells

EMT

Epithelial-mesenchymal transition

ESR1

Estrogen receptor 1

MDR1

Multidrug resistance protein 1

OSCC

Oral squamous-cell carcinoma

PCNA

Proliferating cell nuclear antigen

PDCD4

Programmed cell death protein 4

PRC

Polycomb repressive complexes

PTEN

Phosphatase and tensin homolog deleted on chromosome 10

Sp

Specificity protein

WT1

Wilm’s tumor 1

Notes

Conflict of Interests

The authors have no competing interests to declare.

References

  1. Adams BK, Ferstl EM, Davis MC, Herold M, Kurtkaya S, Camalier RF, Hollingshead MG, Kaur G, Sausville EA, Rickles FR (2004) Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg Med Chem 12:3871–3883PubMedCrossRefGoogle Scholar
  2. Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71:1397–1421PubMedCrossRefGoogle Scholar
  3. Aggarwal S, Takada Y, Singh S, Myers JN, Aggarwal BB (2004) Inhibition of growth and survival of human head and neck squamous cell carcinoma cells by curcumin via modulation of nuclear factor‐kB signaling. Int J Cancer 111:679–692PubMedCrossRefGoogle Scholar
  4. Ahmad A, Sayed A, Ginnebaugh KR, Sharma V, Suri A, Saraph A, Padhye S, Sarkar FH (2015) Molecular docking and inhibition of matrix metalloproteinase-2 by novel difluorinatedbenzylidene curcumin analog. Am J Transl Res 7:298–308PubMedPubMedCentralGoogle Scholar
  5. Akram M, Shahab-Uddin AA, Usmanghani K, Hannan A, Mohiuddin E, Asif M (2010) Curcuma longa and curcumin: a review article. Rom J Biol Plant Biol 55:65–70Google Scholar
  6. Al-Ansari MM, Aboussekhra A (2015) miR-146b-5p mediates p16-dependent repression of IL-6 and suppresses paracrine procarcinogenic effects of breast stromal fibroblasts. Oncotarget 6:30006–30016PubMedPubMedCentralGoogle Scholar
  7. Ali S, Ahmad A, Banerjee S, Padhye S, Dominiak K, Schaffert JM, Wang Z, Philip PA, Sarkar FH (2010) Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res 70:3606–3617PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ali S, Ahmad A, Aboukameel A, Bao B, Padhye S, Philip PA, Sarkar FH (2012) Increased Ras GTPase activity is regulated by miRNAs that can be attenuated by CDF treatment in pancreatic cancer cells. Cancer Lett 319:173–181PubMedPubMedCentralCrossRefGoogle Scholar
  9. Ambros V (2003) MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113:673–676PubMedCrossRefGoogle Scholar
  10. Arafa HM (2005) Curcumin attenuates diet-induced hypercholesterolemia in rats. Med Sci Monit 11:BR228–BR234Google Scholar
  11. Asai A, Miyazawa T (2001) Dietary curcuminoids prevent high-fat diet-induced lipid accumulation in rat liver and epididymal adipose tissue. J Nutr 131:2932–2935PubMedGoogle Scholar
  12. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27:2128–2136PubMedCrossRefGoogle Scholar
  13. Balasubramanyam K, Varier RA, Altaf M, Swaminathan V, Siddappa NB, Ranga U, Kundu TK (2004) Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem 279:51163–51171PubMedCrossRefGoogle Scholar
  14. Bao B, Ali S, Kong D, Sarkar SH, Wang Z, Banerjee S, Aboukameel A, Padhye S, Philip PA, Sarkar FH (2011) Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and PTEN in pancreatic cancer. PLoS One 6, e17850PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bao B, Ali S, Banerjee S, Wang Z, Logna F, Azmi AS, Kong D, Ahmad A, Li Y, Padhye S (2012) Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res 72:335–345PubMedCrossRefGoogle Scholar
  16. Brighenti M (2015) MicroRNA and MET in lung cancer. Ann Transl Med 3:68PubMedPubMedCentralGoogle Scholar
  17. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26:745–752PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen A, Xu J, Johnson A (2006) Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene 25:278–287PubMedGoogle Scholar
  19. Chen K, An Y, Tie L, Pan Y, Li X (2015) Curcumin protects neurons from glutamate-induced excitotoxicity by membrane anchored AKAP79-PKA interaction network. Evid Based Complement Alternat Med 2015:706207PubMedPubMedCentralGoogle Scholar
  20. Choudhuri T, Pal S, Das T, Sa G (2005) Curcumin selectively induces apoptosis in deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependent manner. J Biol Chem 280:20059–20068PubMedCrossRefGoogle Scholar
  21. Collett GP, Campbell FC (2004) Curcumin induces c-jun N-terminal kinase-dependent apoptosis in HCT116 human colon cancer cells. Carcinogenesis 25:2183–2189PubMedCrossRefGoogle Scholar
  22. Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY (2007) MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67:8433–8438PubMedCrossRefGoogle Scholar
  23. Dahmke IN, Backes C, Rudzitis-Auth J, Laschke MW, Leidinger P, Menger MD, Meese E, Mahlknecht U (2013) Curcumin intake affects miRNA signature in murine melanoma with mmu-miR-205-5p most significantly altered. PLoS One 8, e81122PubMedPubMedCentralCrossRefGoogle Scholar
  24. Das PM, Singal R (2004) DNA methylation and cancer. J Clin Oncol 22:4632–4642PubMedCrossRefGoogle Scholar
  25. Esmaily H, Sahebkar A, Iranshahi M, Ganjali S, Mohammadi A, Ferns G, Ghayour-Mobarhan M (2015) An investigation of the effects of curcumin on anxiety and depression in obese individuals: a randomized controlled trial. Chin J Integr Med 21:332–338PubMedCrossRefGoogle Scholar
  26. Fan C, Wo X, Qian Y, Yin J, Gao L (2006) Effect of curcumin on the expression of LDL receptor in mouse macrophages. J Ethnopharmacol 105:251–254PubMedCrossRefGoogle Scholar
  27. Gandhy SU, Kim K, Larsen L, Rosengren RJ, Safe S (2012) Curcumin and synthetic analogs induce reactive oxygen species and decreases specificity protein (Sp) transcription factors by targeting microRNAs. BMC Cancer 12:564PubMedPubMedCentralCrossRefGoogle Scholar
  28. Ganjali S, Sahebkar A, Mahdipour E, Jamialahmadi K, Torabi S, Akhlaghi S, Ferns G, Parizadeh SMR, Ghayour-Mobarhan M (2014) Investigation of the effects of curcumin on serum cytokines in obese individuals: a randomized controlled trial. ScientificWorldJournal 2014:898361Google Scholar
  29. Gao SM, Yang JJ, Chen CQ, Chen JJ, Ye LP, Wang LY, Wu JB, Xing CY, Yu K (2012) Pure curcumin decreases the expression of WT1 by upregulation of miR-15a and miR-16-1 in leukemic cells. J Exp Clin Cancer Res 31:27PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gao W, Chan JY-W, Wong T-S (2014) Curcumin exerts inhibitory effects on undifferentiated nasopharyngeal carcinoma by inhibiting the expression of miR-125a-5p. Clin Sci 127:571–579PubMedCrossRefGoogle Scholar
  31. Gleissner CA, Erbel C, Haeussler J, Akhavanpoor M, Domschke G, Linden F, Doesch AO, Conradson G, Buss SJ, Hofmann NP, Gitsioudis G, Katus HA, Korosoglou G (2014) Low levels of natural IgM antibodies against phosphorylcholine are independently associated with vascular remodeling in patients with coronary artery disease. Clin Res Cardiol 104:13–22PubMedCrossRefGoogle Scholar
  32. Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389:349–352PubMedCrossRefGoogle Scholar
  33. Guo J, Li W, Shi H, Xie X, Li L, Tang H, Wu M, Kong Y, Yang L, Gao J (2013) Synergistic effects of curcumin with emodin against the proliferation and invasion of breast cancer cells through upregulation of miR-34a. Mol Cell Biochem 382:103–111PubMedCrossRefGoogle Scholar
  34. Guo H, Xu Y, Fu Q (2015) Curcumin inhibits growth of prostate carcinoma via miR-208-mediated CDKN1A activation. Tumour Biol 36(11):8511–8517. doi: 10.1007/s13277-015-3592-y PubMedCrossRefGoogle Scholar
  35. Gupta SC, Kim JH, Prasad S, Aggarwal BB (2010) Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev 29:405–434PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hammond SM (2015) An overview of microRNAs. Adv Drug Deliv Rev 87:3–14PubMedPubMedCentralCrossRefGoogle Scholar
  37. Jiang A, Wang X, Shan X, Li Y, Wang P, Jiang P, Feng Q (2015) Curcumin reactivates silenced tumor suppressor gene RARbeta by reducing DNA methylation. Phytother Res 29:1237–1245PubMedCrossRefGoogle Scholar
  38. Jin H, Qiao F, Wang Y, Xu Y, Shang Y (2015) Curcumin inhibits cell proliferation and induces apoptosis of human non-small cell lung cancer cells through the upregulation of miR-192-5p and suppression of PI3K/Akt signaling pathway. Oncol Rep 34:2782–2789PubMedGoogle Scholar
  39. Jordan W, Drew C (1996) Curcumin—a natural herb with anti-HIV activity. J Natl Med Assoc 88:333PubMedPubMedCentralGoogle Scholar
  40. Jurenka JS (2009) Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev 14:277Google Scholar
  41. Kanwar SS, Yu Y, Nautiyal J, Patel BB, Padhye S, Sarkar FH, Majumdar AP (2011) Difluorinated-curcumin (CDF): a novel curcumin analog is a potent inhibitor of colon cancer stem-like cells. Pharm Res 28:827–838PubMedCrossRefGoogle Scholar
  42. Kim M-k, G-j C, Lee H-s (2003) Fungicidal property of Curcuma longa L. rhizome-derived curcumin against phytopathogenic fungi in a greenhouse. J Agric Food Chem 51:1578–1581PubMedCrossRefGoogle Scholar
  43. Kronski E, Fiori ME, Barbieri O, Astigiano S, Mirisola V, Killian PH, Bruno A, Pagani A, Rovera F, Pfeffer U (2014) miR181b is induced by the chemopreventive polyphenol curcumin and inhibits breast cancer metastasis via down-regulation of the inflammatory cytokines CXCL1 and-2. Mol Oncol 8:581–595PubMedCrossRefGoogle Scholar
  44. Kumar K, Rai AK (2012) Proniosomal formulation of curcumin having anti-inflammatory and anti-arthritic activity in different experimental animal models. Pharmazie 67:852–857PubMedGoogle Scholar
  45. Kuncha M, Naidu VG, Sahu BD, Gadepalli SG, Sistla R (2014) Curcumin potentiates the anti-arthritic effect of prednisolone in Freund’s complete adjuvant-induced arthritic rats. J Pharm Pharmacol 66:133–144PubMedCrossRefGoogle Scholar
  46. Kurzrock R, Li L (2005) Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. In: ASCO annual meeting proceedings, p 4091Google Scholar
  47. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lee SJ, Krauthauser C, Maduskuie V, Fawcett PT, Olson JM, Rajasekaran SA (2011) Curcumin-induced HDAC inhibition and attenuation of medulloblastoma growth in vitro and in vivo. BMC Cancer 11:144PubMedPubMedCentralCrossRefGoogle Scholar
  49. Li L, Ahmed B, Mehta K, Kurzrock R (2007) Liposomal curcumin with and without oxaliplatin: effects on cell growth, apoptosis, and angiogenesis in colorectal cancer. Mol Cancer Ther 6:1276–1282PubMedCrossRefGoogle Scholar
  50. Li Y, Kong D, Wang Z, Sarkar FH (2010) Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharm Res 27:1027–1041PubMedPubMedCentralCrossRefGoogle Scholar
  51. Li X, Xie W, Xie C, Huang C, Zhu J, Liang Z, Deng F, Zhu M, Zhu W, Wu R (2014) Curcumin modulates miR‐19/PTEN/AKT/p53 axis to suppress bisphenol A‐induced MCF‐7 breast cancer cell proliferation. Phytother Res 28:1553–1560PubMedCrossRefGoogle Scholar
  52. Liang HH, Wei PL, Hung CS, Wu CT, Wang W, Huang MT, Chang YJ (2013) MicroRNA-200a/b influenced the therapeutic effects of curcumin in hepatocellular carcinoma (HCC) cells. Tumour Biol 34:3209–3218PubMedCrossRefGoogle Scholar
  53. Lu W-C, Kao S-Y, Yang C-C, Tu H-F, Wu C-H, Chang K-W, Lin S-C (2014) EGF up-regulates miR-31 through the C/EBPβ signal cascade in oral carcinoma. PLoS One 9, e108049PubMedPubMedCentralCrossRefGoogle Scholar
  54. Ma J, Fang B, Zeng F, Pang H, Zhang J, Shi Y, Wu X, Cheng L, Ma C, Xia J (2014) Curcumin inhibits cell growth and invasion through up-regulation of miR-7 in pancreatic cancer cells. Toxicol Lett 231:82–91PubMedCrossRefGoogle Scholar
  55. Mahady G, Pendland S, Yun G, Lu Z (2001) Turmeric (Curcuma longa) and curcumin inhibit the growth of Helicobacter pylori, a group 1 carcinogen. Anticancer Res 22:4179–4181Google Scholar
  56. Mani S, Herceg Z (2010) DNA demethylating agents and epigenetic therapy of cancer. Adv Genet 70:327–340PubMedGoogle Scholar
  57. Mao L, Hruban RH, Boyle JO, Tockman M, Sidransky D (1994) Detection of oncogene mutations in sputum precedes diagnosis of lung cancer. Cancer Res 54:1634–1637PubMedGoogle Scholar
  58. Mirgani MT, Isacchi B, Sadeghizadeh M, Marra F, Bilia AR, Mowla SJ, Najafi F, Babaei E (2014) Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells. Int J Nanomedicine 9:403Google Scholar
  59. Mirzaei H, Naseri G, Rezaee R, Mohammadi M, Banikazemi Z, Reza Mirzaei H, Salehi H, Peyvandi M, Pawelek JM, Sahebkar A (2016) Curcumin: a new candidate for melanoma therapy? Int J Cancer. doi: 10.1002/ijc.30224 PubMedGoogle Scholar
  60. Mohammadi A, Sahebkar A, Iranshahi M, Amini M, Khojasteh R, Ghayour-Mobarhan M, Ferns GA (2013) Effects of supplementation with curcuminoids on dyslipidemia in obese patients: a randomized crossover trial. Phytother Res 27:374–379PubMedCrossRefGoogle Scholar
  61. Momtazi AA, Sahebkar A (2016) Difluorinated curcumin: a promising curcumin analogue with improved anti-tumor activity and pharmacokinetic profile. Curr Pharm Des. doi: 10.2174/1381612822666160527113501 PubMedGoogle Scholar
  62. Momtazi AA, Derosa G, Maffioli P, Banach M, Sahebkar A (2016) Role of microRNAs in the therapeutic effects of curcumin in non-cancer diseases. Mol Diagn Ther. doi: 10.1007/s40291-016-0202-7 PubMedGoogle Scholar
  63. Mudduluru G, George-William J, Muppala S, Asangani I, Kumarswamy R, Nelson L, Allgayer H (2011) Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci Rep 31:185–197PubMedCrossRefGoogle Scholar
  64. NCI D (1996) Clinical development plan: curcumin. J Cell Biochem Suppl 26:72–85Google Scholar
  65. Negi P, Jayaprakasha G, Jagan Mohan Rao L, Sakariah K (1999) Antibacterial activity of turmeric oil: a byproduct from curcumin manufacture. J Agric Food Chem 47:4297–4300PubMedCrossRefGoogle Scholar
  66. Nishiyama T, Mae T, Kishida H, Tsukagawa M, Mimaki Y, Kuroda M, Sashida Y, Takahashi K, Kawada T, Nakagawa K (2005) Curcuminoids and sesquiterpenoids in turmeric (Curcuma longa L.) suppress an increase in blood glucose level in type 2 diabetic KK-Ay mice. J Agric Food Chem 53:959–963PubMedCrossRefGoogle Scholar
  67. Noratto GD, Jutooru I, Safe S, Angel-Morales G, Mertens-Talcott SU (2013) The drug resistance suppression induced by curcuminoids in colon cancer SW‐480 cells is mediated by reactive oxygen species‐induced disruption of the microRNA‐27a‐ZBTB10‐Sp axis. Mol Nutr Food Res 57:1638–1648PubMedCrossRefGoogle Scholar
  68. Panahi Y, Sahebkar A, Amiri M, Davoudi SM, Beiraghdar F, Hoseininejad SL, Kolivand M (2012a) Improvement of sulphur mustard-induced chronic pruritus, quality of life and antioxidant status by curcumin: results of a randomised, double-blind, placebo-controlled trial. Br J Nutr 108:1272–1279PubMedCrossRefGoogle Scholar
  69. Panahi Y, Sahebkar A, Parvin S, Saadat A (2012b) A randomized controlled trial on the anti-inflammatory effects of curcumin in patients with chronic sulphur mustard-induced cutaneous complications. Ann Clin Biochem 49:580–588PubMedCrossRefGoogle Scholar
  70. Panahi Y, Rahimnia AR, Sharafi M, Alishiri G, Saburi A, Sahebkar A (2014a) Curcuminoid treatment for knee osteoarthritis: a randomized double-blind placebo-controlled trial. Phytother Res 28:1625–1631PubMedCrossRefGoogle Scholar
  71. Panahi Y, Saadat A, Beiraghdar F, Sahebkar A (2014b) Adjuvant therapy with bioavailability-boosted curcuminoids suppresses systemic inflammation and improves quality of life in patients with solid tumors: a randomized double-blind placebo-controlled trial. Phytother Res 28:1461–1467PubMedCrossRefGoogle Scholar
  72. Panahi Y, Badeli R, Karami GR, Sahebkar A (2015) Investigation of the efficacy of adjunctive therapy with bioavailability-boosted curcuminoids in major depressive disorder. Phytother Res 29:17–21PubMedCrossRefGoogle Scholar
  73. Panahi Y, Alishiri GH, Parvin S, Sahebkar A (2016) Mitigation of systemic oxidative stress by curcuminoids in osteoarthritis: results of a randomized controlled trial. J Diet Suppl 13:209–220PubMedCrossRefGoogle Scholar
  74. Panahi Y, Kianpour P, Mohtashami R, Jafari R, Simental-Mendía LE, Sahebkar A (2016) Curcumin lowers serum lipids and uric acid in subjects with non-alcoholic fatty liver disease: a randomized controlled trial. J Cardiovasc Pharmacol. doi: 10.1097/FJC.0000000000000406 PubMedGoogle Scholar
  75. Rahmani S, Asgary S, Askari G, Keshvari M, Hatamipour M, Feizi A, Sahebkar A (2016) Treatment of non-alcoholic fatty liver disease with curcumin: a randomized placebo-controlled trial. Phytother Res. doi: 10.1002/ptr.5659 PubMedGoogle Scholar
  76. Reddy RC, Vatsala PG, Keshamouni VG, Padmanaban G, Rangarajan PN (2005) Curcumin for malaria therapy. Biochem Biophys Res Commun 326:472–474PubMedCrossRefGoogle Scholar
  77. Reid JM, Buhrow SA, Gilbert JA, Jia L, Shoji M, Snyder JP, Ames MM (2014) Mouse pharmacokinetics and metabolism of the curcumin analog, 4-piperidinone, 3,5-bis [(2-fluorophenyl) methylene]-acetate (3E, 5E)(EF-24; NSC 716993). Cancer Chemother Pharmacol 73:1137–1146PubMedPubMedCentralCrossRefGoogle Scholar
  78. Roy S, Levi E, Majumdar A, Sarkar FH (2012) Expression of miR-34 is lost in colon cancer which can be re-expressed by a novel agent CDF. J Hematol Oncol 5:58PubMedPubMedCentralCrossRefGoogle Scholar
  79. Roy S, Yu Y, Padhye SB, Sarkar FH, Majumdar AP (2013) Difluorinated-curcumin (CDF) restores PTEN expression in colon cancer cells by down-regulating miR-21. PLoS One 8, e68543PubMedPubMedCentralCrossRefGoogle Scholar
  80. Sahebkar A (2010) Molecular mechanisms for curcumin benefits against ischemic injury. Fertil Steril 94:e75–e76; author reply e77Google Scholar
  81. Sahebkar A (2013) Why it is necessary to translate curcumin into clinical practice for the prevention and treatment of metabolic syndrome? Biofactors 39:197–208PubMedCrossRefGoogle Scholar
  82. Sahebkar A (2014) Are curcuminoids effective C-reactive protein-lowering agents in clinical practice? Evidence from a meta-analysis. Phytother Res 28:633–642PubMedCrossRefGoogle Scholar
  83. Sahebkar A (2016) Autophagic activation: a key piece of the puzzle for the curcumin-associated cognitive enhancement? J Psychopharmacol 30:93–94PubMedCrossRefGoogle Scholar
  84. Sahebkar A, Henrotin Y (2015) Analgesic efficacy and safety of curcuminoids in clinical practice: a systematic review and meta-analysis of randomized controlled trials. Pain MedGoogle Scholar
  85. Sahebkar A, Mohammadi A, Atabati A, Rahiman S, Tavallaie S, Iranshahi M, Akhlaghi S, Ferns GA, Ghayour-Mobarhan M (2013) Curcuminoids modulate pro‐oxidant–antioxidant balance but not the immune response to heat shock protein 27 and oxidized LDL in obese individuals. Phytother Res 27:1883–1888PubMedCrossRefGoogle Scholar
  86. Sahebkar A, Chew GT, Watts GF (2014) Recent advances in pharmacotherapy for hypertriglyceridemia. Prog Lipid Res 56:47–66PubMedCrossRefGoogle Scholar
  87. Sahebkar A, Serban MC, Ursoniu S, Banach M (2015) Effect of curcuminoids on oxidative stress: a systematic review and meta-analysis of randomized controlled trials. J Funct Foods 18:898–909CrossRefGoogle Scholar
  88. Sahebkar A, Cicero AF, Simental-Mendia LE, Aggarwal BB, Gupta SC (2016) Curcumin downregulates human tumor necrosis factor-alpha levels: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 107:234–242PubMedCrossRefGoogle Scholar
  89. Saini S, Arora S, Majid S, Shahryari V, Chen Y, Deng G, Yamamura S, Ueno K, Dahiya R (2011) Curcumin modulates microRNA-203-mediated regulation of the Src-Akt axis in bladder cancer. Cancer Prev Res (Phila) 4:1698–1709PubMedCentralCrossRefGoogle Scholar
  90. Sankar P, Telang AG, Suresh S, Kesavan M, Kannan K, Kalaivanan R, Sarkar SN (2013) Immunomodulatory effects of nanocurcumin in arsenic-exposed rats. Int Immunopharmacol 17:65–70PubMedCrossRefGoogle Scholar
  91. Sarkar S, Dubaybo H, Ali S, Goncalves P, Kollepara SL, Sethi S, Philip PA, Li Y (2013) Down-regulation of miR-221 inhibits proliferation of pancreatic cancer cells through up-regulation of PTEN, p27(kip1), p57(kip2), and PUMA. Am J Cancer Res 3:465–477PubMedPubMedCentralGoogle Scholar
  92. Sawan C, Vaissière T, Murr R, Herceg Z (2008) Epigenetic drivers and genetic passengers on the road to cancer. Mutat Res 642:1–13PubMedCrossRefGoogle Scholar
  93. Seyedzadeh MH, Safari Z, Zare A, Gholizadeh Navashenaq J, Razavi SA, Kardar GA, Khorramizadeh MR (2014) Study of curcumin immunomodulatory effects on reactive astrocyte cell function. Int Immunopharmacol 22:230–235PubMedCrossRefGoogle Scholar
  94. Shakeri A, Sahebkar A (2016) Optimized curcumin formulations for the treatment of Alzheimer’s disease: a patent evaluation. J Neurosci Res 94:111–113PubMedCrossRefGoogle Scholar
  95. Shankar S, Srivastava RK (2007) Involvement of Bcl-2 family members, phosphatidylinositol 3′-kinase/AKT and mitochondrial p53 in curcumin (diferulolylmethane)-induced apoptosis in prostate cancer. Int J Oncol 30:905–918PubMedGoogle Scholar
  96. Sharma O (1976) Antioxidant activity of curcumin and related compounds. Biochem Pharmacol 25:1811–1812PubMedCrossRefGoogle Scholar
  97. Sharma S, Kulkarni SK, Chopra K (2006) Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats. Clin Exp Pharmacol Physiol 33:940–945PubMedCrossRefGoogle Scholar
  98. Shen LL, Jiang ML, Liu SS, Cai MC, Hong ZQ, Lin LQ, Xing YY, Chen GL, Pan R, Yang LJ, Xu Y, Dong J (2015) Curcumin improves synaptic plasticity impairment induced by HIV-1gp120 V3 loop. Neural Regen Res 10:925–931PubMedPubMedCentralCrossRefGoogle Scholar
  99. Shu L, Khor TO, Lee J-H, Boyanapalli SS, Huang Y, Wu T-Y, Saw CL-L, Cheung K-L, Kong A-NT (2011) Epigenetic CpG demethylation of the promoter and reactivation of the expression of Neurog1 by curcumin in prostate LNCaP cells. AAPS J 13:606–614PubMedPubMedCentralCrossRefGoogle Scholar
  100. Sidhu GS, Singh AK, Thaloor D, Banaudha KK, Patnaik GK, Srimal RC, Maheshwari RK (1998) Enhancement of wound healing by curcumin in animals. Wound Repair Regen 6:167–177PubMedCrossRefGoogle Scholar
  101. Sreenivasan S, Thirumalai K, Danda R, Krishnakumar S (2012) Effect of curcumin on miRNA expression in human Y79 retinoblastoma cells. Curr Eye Res 37:421–428PubMedCrossRefGoogle Scholar
  102. Steger DJ, Workman JL (1996) Remodeling chromatin structures for transcription: what happens to the histones? Bioessays 18:875–884PubMedCrossRefGoogle Scholar
  103. Strimpakos AS, Sharma RA (2008) Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signal 10:511–546PubMedCrossRefGoogle Scholar
  104. Subramaniam D, Ponnurangam S, Ramamoorthy P, Standing D, Battafarano RJ, Anant S, Sharma P (2012) Curcumin induces cell death in esophageal cancer cells through modulating Notch signaling. PLoS One 7, e30590PubMedPubMedCentralCrossRefGoogle Scholar
  105. Sun Y (2006) p53 and its downstream proteins as molecular targets of cancer. Mol Carcinog 45:409–415PubMedCrossRefGoogle Scholar
  106. Sun M, Estrov Z, Ji Y, Coombes KR, Harris DH, Kurzrock R (2008) Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther 7:464–473PubMedCrossRefGoogle Scholar
  107. Tang N, Zhang J, Du Y (2010) [Curcumin promoted the apoptosis of cisplain-resistant human lung carcinoma cells A549/DDP through down-regulating miR-186*]. Zhongguo Fei Ai Za Zhi 13:301–306Google Scholar
  108. Taverna S, Giallombardo M, Pucci M, Flugy A, Manno M, Raccosta S, Rolfo C, De Leo G, Alessandro R (2015) Curcumin inhibits in vitro and in vivo chronic myelogenous leukemia cells growth: a possible role for exosomal disposal of miR-21. Oncotarget 6:21918–21933PubMedPubMedCentralCrossRefGoogle Scholar
  109. Teiten M-H, Gaigneaux A, Chateauvieux S, Billing AM, Planchon S, Fack F, Renaut J, Mack F, Muller CP, Dicato M (2012) Identification of differentially expressed proteins in curcumin-treated prostate cancer cell lines. OMICS 16:289–300PubMedCrossRefGoogle Scholar
  110. Teiten MH, Dicato M, Diederich M (2013) Curcumin as a regulator of epigenetic events. Mol Nutr Food Res 57:1619–1629PubMedCrossRefGoogle Scholar
  111. Toden S, Okugawa Y, Jascur T, Wodarz D, Komarova NL, Buhrmann C, Shakibaei M, Boland CR, Goel A (2015) Curcumin mediates chemosensitization to 5-fluorouracil through miRNA-induced suppression of epithelial-to-mesenchymal transition in chemoresistant colorectal cancer. Carcinogenesis 36:355–367PubMedPubMedCentralCrossRefGoogle Scholar
  112. Ueno K, Hirata H, Shahryari V, Deng G, Tanaka Y, Tabatabai ZL, Hinoda Y, Dahiya R (2013) microRNA-183 is an oncogene targeting Dkk-3 and SMAD4 in prostate cancer. Br J Cancer 108:1659–1667PubMedPubMedCentralCrossRefGoogle Scholar
  113. Um MY, Hwang KH, Choi WH, Ahn J, Jung CH, Ha TY (2014) Curcumin attenuates adhesion molecules and matrix metalloproteinase expression in hypercholesterolemic rabbits. Nutr Res 34:886–893PubMedCrossRefGoogle Scholar
  114. Wang Y, Lee CG (2009) MicroRNA and cancer-focus on apoptosis. J Cell Mol Med 13:12–23PubMedCrossRefGoogle Scholar
  115. Wang Y, Li J, Zhuge L, Su D, Yang M, Tao S (2014) Comparison between the efficacies of curcumin and puerarin in C57BL/6 mice with steatohepatitis induced by a methionine- and choline-deficient diet. Exp Ther Med 7:663–668PubMedGoogle Scholar
  116. Wang BF, Cui ZW, Zhong ZH, Sun YH, Sun QF, Yang GY, Bian LG (2015) Curcumin attenuates brain edema in mice with intracerebral hemorrhage through inhibition of AQP4 and AQP9 expression. Acta Pharmacol Sin 36:939–948PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wang J, Xie H, Gao F, Zhao T, Yang H, Kang B (2016) Curcumin induces apoptosis in p53-null Hep3B cells through a TAp73/DNp73-dependent pathway. Tumour Biol 37:4203–4212PubMedCrossRefGoogle Scholar
  118. Williams RJ, Spencer JP (2012) Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med 52:35–45PubMedCrossRefGoogle Scholar
  119. Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234PubMedCrossRefGoogle Scholar
  120. Xiao C, Wang L, Zhu L, Zhang C, Zhou J (2014) Curcumin inhibits oral squamous cell carcinoma SCC-9 cells proliferation by regulating miR-9 expression. Biochem Biophys Res Commun 454:576–580PubMedCrossRefGoogle Scholar
  121. Yallapu MM, Khan S, Maher DM, Ebeling MC, Sundram V, Chauhan N, Ganju A, Balakrishna S, Gupta BK, Zafar N (2014) Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer. Biomaterials 35:8635–8648PubMedPubMedCentralCrossRefGoogle Scholar
  122. Yang J, Cao Y, Sun J, Zhang Y (2010) Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Med Oncol 27:1114–1118PubMedCrossRefGoogle Scholar
  123. Yang CH, Yue J, Sims M, Pfeffer LM (2013) The curcumin analog EF24 targets NF-kappaB and miRNA-21, and has potent anticancer activity in vitro and in vivo. PLoS One 8, e71130PubMedPubMedCentralCrossRefGoogle Scholar
  124. Yang Y, Wu X, Wei Z, Dou Y, Zhao D, Wang T, Bian D, Tong B, Xia Y, Xia Y, Dai Y (2015) Oral curcumin has anti-arthritic efficacy through somatostatin generation via cAMP/PKA and Ca(2+)/CaMKII signaling pathways in the small intestine. Pharmacol Res 95–96:71–81PubMedCrossRefGoogle Scholar
  125. Ye M, Zhang J, Miao Q, Yao L (2015) Curcumin promotes apoptosis by activating the p53-miR-192-5p/215-XIAP pathway in non-small cell lung cancer. Cancer Lett 357:196–205PubMedCrossRefGoogle Scholar
  126. Zamani M, Sadeghizadeh M, Behmanesh M, Najafi F (2015) Dendrosomal curcumin increases expression of the long non-coding RNA gene MEG3 via up-regulation of epi-miRs in hepatocellular cancer. Phytomedicine 22:961–967PubMedCrossRefGoogle Scholar
  127. Zhang W, Bai W (2014) MiR-21 suppresses the anticancer activities of curcumin by targeting PTEN gene in human non-small cell lung cancer A549 cells. Clin Transl Oncol 16:708–713PubMedCrossRefGoogle Scholar
  128. Zhang J, Du Y, Wu C, Ren X, Ti X, Shi J, Zhao F, Yin H (2010a) Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186* signaling pathway. Oncol Rep 24:1217–1223PubMedGoogle Scholar
  129. Zhang J, Zhang T, Ti X, Shi J, Wu C, Ren X, Yin H (2010b) Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway. Biochem Biophys Res Commun 399:1–6PubMedCrossRefGoogle Scholar
  130. Zhang P, Bai H, Liu G, Wang H, Chen F, Zhang B, Zeng P, Wu C, Peng C, Huang C (2015) MicroRNA-33b, upregulated by EF24, a curcumin analog, suppresses the epithelial-to-mesenchymal transition (EMT) and migratory potential of melanoma cells by targeting HMGA2. Toxicol Lett 234:151–161PubMedCrossRefGoogle Scholar
  131. Zhao S-F, Zhang X, Zhang X-J, Shi X-Q, Yu Z-J, Kan Q-C (2014) Induction of microRNA-9 mediates cytotoxicity of curcumin against SKOV3 ovarian cancer cells. Asian Pac J Cancer Prev 15:3363–3368PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Amir Abbas Momtazi
    • 1
    • 2
  • Fahimeh Shahabipour
    • 3
  • Sepideh Khatibi
    • 4
  • Thomas P. Johnston
    • 5
  • Matteo Pirro
    • 6
  • Amirhossein Sahebkar
    • 7
    • 8
  1. 1.Student Research Committee, Department of Medical Biotechnology, School of MedicineMashhad University of Medical SciencesMashhadIran
  2. 2.Nanotechnology Research Center, Bu-Ali Research InstituteMashhad University of Medical SciencesMashhadIran
  3. 3.National Cell Bank of IranPasteur Institute of IranTehranIran
  4. 4.Neurogenic Inflammation Research Center, Department of Medical BiotechnologyMashhad University of Medical SciencesMashhadIran
  5. 5.Division of Pharmaceutical SciencesSchool of Pharmacy, University of Missouri-Kansas CityKansas CityUSA
  6. 6.Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of MedicineUniversity of PerugiaPerugiaItaly
  7. 7.Biotechnology Research CenterMashhad University of Medical SciencesMashhadIran
  8. 8.Metabolic Research CentreRoyal Perth Hospital, School of Medicine and Pharmacology, University of Western AustraliaPerthAustralia

Personalised recommendations