Intrinsically Photosensitive Retinal Ganglion Cells

Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 162)


Intrinsically photosensitive retinal ganglion cells (ipRGCs) respond to light in the absence of all rod and cone photoreceptor input. The existence of these ganglion cell photoreceptors, although predicted from observations scattered over many decades, was not established until it was shown that a novel photopigment, melanopsin, was expressed in retinal ganglion cells of rodents and primates. Phototransduction in mammalian ipRGCs more closely resembles that of invertebrate than vertebrate photoreceptors and appears to be mediated by transient receptor potential channels. In the retina, ipRGCs provide excitatory drive to dopaminergic amacrine cells and ipRGCs are coupled to GABAergic amacrine cells via gap junctions. Several subtypes of ipRGC have been identified in rodents based on their morphology, physiology and expression of molecular markers. ipRGCs convey irradiance information centrally via the optic nerve to influence several functions including photoentrainment of the biological clock located in the hypothalamus, the pupillary light reflex, sleep and perhaps some aspects of vision. In addition, ipRGCs may also contribute irradiance signals that interface directly with the autonomic nervous system to regulate rhythmic gene activity in major organs of the body. Here we review the early work that provided the motivation for searching for a new mammalian photoreceptor, the ground-breaking discoveries, current progress that continues to reveal the unusual properties of these neuron photoreceptors, and directions for future investigation.


Melanopsin Circadian rhythms Suprachiasmatic nucleus Retina 



Supported by grants from the National Institutes of Health; National Institute of Neurological Disorders and Stroke R01 NS035615 and National Eye Institute R01 EY017809.


  1. Allen AE, Cameron MA, Brown TM et al (2010) Visual responses in mice lacking critical components of all known retinal phototransduction cascades. PLoS ONE 5:e15063Google Scholar
  2. Altimus CM, Güler AD, Villa KL et al (2008) Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation. Proc Natl Acad Sci USA 105:19998–20003PubMedCrossRefGoogle Scholar
  3. Aschoff J (1960) Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symp on Quan Biol 25:11–28CrossRefGoogle Scholar
  4. Avery DH, Dahl K, Savage MV et al (1997) Circadian temperature and cortisol rhythms during a constant routine are phase-delayed in hypersomnic winter depression. Biol Psychiatry 41:1109–1123PubMedCrossRefGoogle Scholar
  5. Bailes HJ, Lucas RJ (2010) Melanopsin and inner retinal photoreception. Cell Mol Life Sci 67:99–111PubMedCrossRefGoogle Scholar
  6. Balsalobre A, Brown SA, Marcacci L et al (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289:2344–2347PubMedCrossRefGoogle Scholar
  7. Baver SB, Pickard GE, Sollars PJ et al (2008) Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus. Eur J Neurosci 27:1763–1770PubMedCrossRefGoogle Scholar
  8. Belenky MA, Smeraski CA, Provencio I et al (2003) Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J Comp Neurol 460:380–393PubMedCrossRefGoogle Scholar
  9. Berson DM (2003) Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci 26:314–320PubMedCrossRefGoogle Scholar
  10. Berson DM (2007) Phototransduction in ganglion-cell photoreceptors. Pflügers Arch 454:849–855PubMedCrossRefGoogle Scholar
  11. Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073PubMedCrossRefGoogle Scholar
  12. Berson DM, Castrucci AM, Provencio I (2010) Morphology and mosaics of melanopsin-expressing retinal ganglion cell types in mice. J Comp Neurol 518:2405–2422PubMedCrossRefGoogle Scholar
  13. Brainard GC, Hanifin JP, Rollag MD et al (2001) Human melatonin regulation is not mediated by the three cone photopic visual system. J Clin Endocrinol Met 86:433–436CrossRefGoogle Scholar
  14. Bramley JR, Wiles EM, Sollars PJ et al (2011) Carbenoxolone blocks the light-evoked rise in intracellular calcium in isolated melanopsin ganglion cell photoreceptors. PLoS ONE 6:e22721PubMedCrossRefGoogle Scholar
  15. Brown TM, Lucas RJ (2009) Melanopsin phototransduction: great excitement over a poor catch. Curr Biol 19:R256–R257PubMedCrossRefGoogle Scholar
  16. Cajal S Ramón y (1894) Les Nouvelles Ideés sur la Structure du Système Nerveux chez l’Homme et chez les Vértebrés. Reinwald, ParisGoogle Scholar
  17. Chambille I (1998) Retinal ganglion cells expressing the FOS protein after light stimulation in the Syrian hamster are relatively insensitive to neonatal treatment with monosodium glutamate. J Comp Neurol 392:458–467PubMedCrossRefGoogle Scholar
  18. Chambille I, Serviere J (1993) Neurotoxic effects of neonatal injections of monosodium L-glutamate (L-MSG) on the retinal ganglion cell layer of the golden hamster: anatomical and functional consequences on the circadian system. J Comp Neurol 338:67–82PubMedCrossRefGoogle Scholar
  19. Chen CK, Burns ME, Spencer M et al (1999) Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase. Proc Natl Acad Sci USA 96:3718–3722PubMedCrossRefGoogle Scholar
  20. Chen SK, Badea TC, Hattar S (2011) Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature 476:92–95PubMedCrossRefGoogle Scholar
  21. Cooper HM, Mure LS (2008) Expected and unexpected properties of melanopsin signaling. J Biol Rhythms 23:392–393PubMedCrossRefGoogle Scholar
  22. Cowan WM, Gottlieb DI, Hendrickson AE et al (1972) The autoradiographic demonstration of axonal connection in the central nervous system. Brain Res 37:21–51PubMedCrossRefGoogle Scholar
  23. Dacey DM (1985) Wide-spreading terminal axons in the inner plexiform layer of the cat’s retina: evidence for intrinsic axon collaterals of ganglion cells. J Comp Neurol 242:247–262PubMedCrossRefGoogle Scholar
  24. Dacey DM, Lioa H-W, Peterson BB et al (2005) Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433:749–754PubMedCrossRefGoogle Scholar
  25. Daniolos A, Lerner AB, Lerner MR (1990) Action of light on frog pigment cells in culture. Pigment Cell Res 3:38–43PubMedCrossRefGoogle Scholar
  26. Darwin C, Darwin F (1880) The power of movements in plants. John Murray, LondonGoogle Scholar
  27. Davies WIL, Zheng L, Hughes S et al (2011) Functional diversity of melanopsins and their global expression in the teleost retina. Cell Mol Life Sci (in press)Google Scholar
  28. De Candolle A (1832) Physiologie vegetale, ou Exposition des forces et des fonctions vitals des vegetaux, Bechet jeune, ParisGoogle Scholar
  29. De Mairan M (1729) Observation botanique. Historie de l’Academie Royale des Sciences, Paris:1Google Scholar
  30. DeCoursey PJ (1972) LD ratios and the entrainment of circadian activity in a nocturnal and diurnal rodent. J Comp Physiol 78:221–235CrossRefGoogle Scholar
  31. de Zavalia N, Plano SA, Fernandez DC et al (2011) Effect of experimental glaucoma on the non-image forming visual system. J Neurochem 117:904–914PubMedCrossRefGoogle Scholar
  32. Do MT, Kang SH, Xue T et al (2009) Photon capture and signaling by melanopsin retinal ganglion cells. Nature 457:281–287PubMedCrossRefGoogle Scholar
  33. Dräger UC, Hubel DH (1978) Studies of visual function and its decay in mice with hereditary retinal degeneration. J Comp Neurol 180:85–114PubMedCrossRefGoogle Scholar
  34. Drouyer E, Dkhissi-Benyahya O, Chiquet C et al (2008) Glaucoma alters the circadian timing system. PLoS ONE 3:e3931Google Scholar
  35. Dumitrescu ON, Pucci FG, Wong KY et al (2009) Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: contacts with dopaminergic amacrine cells and melanopsin ganglion cells. J Comp Neurol 517:226–244PubMedCrossRefGoogle Scholar
  36. Earnest DJ, Turek FW (1983) Effect of one-second light pulses on testicular function and locomotor activity in the golden hamster. Biol Reprod 28:557–565PubMedCrossRefGoogle Scholar
  37. Ebihara S, Tsuji K (1980) Entrainment of the circadian activity rhythm to the light dark cycle: effective light intensity for a Zeitgeber in the retinal degenerate C3H mouse and normal C57BL mouse. Physiol Behav 24:523–527PubMedCrossRefGoogle Scholar
  38. Ecker J, Dumitrescu ON, Wong KY et al (2010) Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67:49–60PubMedCrossRefGoogle Scholar
  39. Engelund A, Fahrenkrug J, Harrison A et al (2010) Vesicular glutamate transporter 2 (VGLUT2) is co-stored with PACAP in projections from the rat melanopsin-containing retinal ganglion cells. Cell Tiss Res 340:243–255CrossRefGoogle Scholar
  40. Famiglietti EV, Kolb H (1976) Structural basis for on- and off-center responses in retinal ganglion cells. Science 194:193–195PubMedCrossRefGoogle Scholar
  41. Farber DB, Flannery JG, Bowes-Rickman C (1994) The rd mouse story: Seventy years of research on an animal model of inherited retinal degeneration. Prog Retinal Eye Res 13:31–64CrossRefGoogle Scholar
  42. Feigl B, Mattes D, Thomas R et al (2011) Intrinsically photosensitive (melanopsin) retinal ganglion cell function in glaucoma. Invest Ophthalmol Vis Sci 52:4362–4367PubMedCrossRefGoogle Scholar
  43. Foster RG, Provencio I, Hudson D et al (1991) Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol A 169:39–50PubMedCrossRefGoogle Scholar
  44. Freedman MS, Lucas RJ, Soni B et al (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284:502–504PubMedCrossRefGoogle Scholar
  45. Fu Y, Liao H-W, Do MTH et al (2005a) Non-image-forming ocular photoreception in vertebrates. Curr Opin Neurobiol 15:415–422PubMedCrossRefGoogle Scholar
  46. Fu Y, Zhong H, Wang M-H H et al (2005b) Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin. Proc Natl Acad Sci USA 102:10339–10344PubMedCrossRefGoogle Scholar
  47. Fyk-Kolodziej B, Dzhagaryan A, Qin P et al (2004) Immunocytochemical localization of three vesicular glutamate transporters in the cat retina. J Comp Neurol 475:518–530PubMedCrossRefGoogle Scholar
  48. Gaus SE, Strecker RE, Tate BA et al (2002) Ventrolateral preoptic nucleus contains sleep-active, galaninergic neurons in multiple mammalian species. Neurosci 115:285–294CrossRefGoogle Scholar
  49. Gooley JJ, Lu J, Chou TC et al (2001) Melanopsin in cells of origin of the retinohypothalamic tract. Nat Neurosci 4:1165PubMedCrossRefGoogle Scholar
  50. Gooley JJ, Lu J, Fischer D et al (2003) A broad role for melanopsin in nonvisual photoreception. J Neurosci 23:7093–7106PubMedGoogle Scholar
  51. Göz D, Studholme K, Lappi DA et al (2008) Targeted destruction of photosensitive retinal ganglion cells with a saporin conjugate alters the effects of light on mouse circadian rhythms. PLoS ONE 3:e3153PubMedCrossRefGoogle Scholar
  52. Graham DM, Wong KY, Shapiro P et al (2008) Melanopsin ganglion cells use a membrane-associated rhabdomeric phototransduction cascade. J Neurophysiol 99:2522–2532PubMedCrossRefGoogle Scholar
  53. Groos GA, Mason R (1978) Maintained discharge of rat suprachiasmatic neurons at different adaptation levels. Neurosci Lett 8:59–64PubMedCrossRefGoogle Scholar
  54. Groos GA, Mason R (1980) The visual properties of rat and cat suprachiasmatic neurons. J Comp Physiol 135:349–356CrossRefGoogle Scholar
  55. Güler AD, Ecker JL, Lall GS et al (2008) Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453:102–105CrossRefGoogle Scholar
  56. Hamner KC, Finn JC, Sirohi GS, Hoshizaki T, Carpenter BH (1962) The biological clock at the south pole. Nature 195:476–480CrossRefGoogle Scholar
  57. Hannibal J, Georg B, Fahrenkrug J (2007) Melanopsin changes in neonatal albino rat independent of rods and cones. NeuroReport 18:81–85PubMedCrossRefGoogle Scholar
  58. Harrington ME, Rusak B (1986) Lesions of the thalamic intergeniculate leaflet alter hamster circadian rhythms. J Biol Rhythms 1:309–325PubMedCrossRefGoogle Scholar
  59. Hartwick ATE, Bramley JR, Yu J et al (2007) Light-evoked calcium responses of isolated melanopsin-expressing retinal ganglion cells. J Neurosci 27:13468–13480PubMedCrossRefGoogle Scholar
  60. Hartwick ATE, Hamilton CM, Baldridge WH (2008) Glutamatergic calcium dynamics and deregulation of rat retinal ganglion cells. J Physiol 586:3425–3446PubMedCrossRefGoogle Scholar
  61. Hatori M, Le H, Vollmers C et al (2008) Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS ONE 3:e2451PubMedCrossRefGoogle Scholar
  62. Hattar S, Liao HW, Takao M et al (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070PubMedCrossRefGoogle Scholar
  63. Hattar S, Kumar M, Park A et al (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497:326–349PubMedCrossRefGoogle Scholar
  64. Hendrickson AE, Wagoner N, Cowan WM (1972) An autoradioradiographic and electron microscopic study of retinohypothalamic connections. Z Zellforsch 135:1–26PubMedCrossRefGoogle Scholar
  65. Hoffman T, Schaefer M, Schultz G et al (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci USA 99:7461–7466CrossRefGoogle Scholar
  66. Horowitz SS, Blanchard J, Morin LP (2004) Intergeniculate leaflet and ventral lateral geniculate nucleus afferent connections: An anatomical substrate for functional input from the vestibulo-visuomotor system. J Comp Neurol 474:227–245PubMedCrossRefGoogle Scholar
  67. Hoshi H, Liu W-L, Massey SC et al (2009) ON inputs to the OFF layer: bipolar cells that break the stratification rules of the retina. J Neurosci 29:8875–8883PubMedCrossRefGoogle Scholar
  68. Ishida A, Mutoh T, Ueyama T et al (2005) Light activates the adrenal gland: timing of gene expression and glucocorticoid release. Cell Metab 2:297–307PubMedCrossRefGoogle Scholar
  69. Isoldi MC, Rollag MD, Castrucci AM et al (2005) Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. Proc Natl Acad Sci USA 102:1217–1221PubMedCrossRefGoogle Scholar
  70. Jakobs TC, Ben Y, Masland RH (2007) Expression of mRNA for glutamate receptor subunits distinguishes the major classes of retinal neurons, but is less specific for individual cell types. Mol Vis 13:933–948PubMedGoogle Scholar
  71. Jakobs TC, Libby RT, Ben Y et al (2005) Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J Cell Biol 171:313–325CrossRefGoogle Scholar
  72. Johnson J, Fremeau RT, Duncan JL et al (2007) Vesicular glutamate transporter 1 is required for photoreceptor synaptic signaling but not for intrinsic visual functions. J Neurosci 27:7245–7255PubMedCrossRefGoogle Scholar
  73. Johnson MS (1939) Effect of continuous light on periodic spontaneous activity of white-footed mice (Peromyscus). J Exper Zool 82:315–328CrossRefGoogle Scholar
  74. Joo HR, Hattar S, Chen SK (2011) Anatomy and targeting of sparsely labeled M1 ipRGC using the inducible Cre/LoxP system. Soc Neurosci 174.04Google Scholar
  75. Keeler CE (1924) The inheritance of a retinal abnormality in white mice. Proc Natl Acad Sci USA 10:329–333PubMedCrossRefGoogle Scholar
  76. Keeler CE (1927) Iris movements in blind mice. Am J Physiol 81:107–112Google Scholar
  77. Kong J-H, Fish DR, Rockhill RL et al (2005) Diversity of ganglion cells in the mouse retina: unsupervised morphological classification and its limits. J Comp Neurol 489:293–310PubMedCrossRefGoogle Scholar
  78. Koyanagi M, Kubokawa K, Tsukamoto H et al (2005) Cephalochordate melanopsin: evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells. Curr Biol 15:1065–1069PubMedCrossRefGoogle Scholar
  79. Kumbalasiri T, Rollag MD, Isoldi MC et al (2007) Melanopsin triggers the release of internal calcium stores in response to light. Photochem Photobiol 83:273–279PubMedCrossRefGoogle Scholar
  80. La Morgia C, Ross-Cisneros FN, Sadun AA et al (2010) Melanopsin retinal ganglion cells are resistant to neurodegeneration in mitochrondrial optic neuropathies. Brain 133:2426–2438PubMedCrossRefGoogle Scholar
  81. Lamont EW, Robinson B, Stewart J et al (2005) The central and basolateral nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the clock protein Period2. Proc Natl Acad Sci USA 102:4180–4184PubMedCrossRefGoogle Scholar
  82. Lazareva OF, Shimizu T, Wasserman EA (2011) How animals see the world. Oxford University Press (in press)Google Scholar
  83. Lewy AJ, Sack RL, Miller S et al (1987) Antidepressant and circadian phase-shifting effects of light. Science 235:352–354PubMedCrossRefGoogle Scholar
  84. Li RS, Chen BY, Tay DK et al (2006) Melanopsin-expressing retinal ganglion cells are more injury-resistant in a chronic ocular hypertension model. Invest Ophthalmol Vis Sci 47:2951–2958PubMedCrossRefGoogle Scholar
  85. Li SY, Yau SY, Chen BY et al (2008) Enhanced survival of melanopsin-expressing retinal ganglion cells after injury is associated with the PI3 K/Akt pathway. Cell Mol Neurobiol 28:1095–1107PubMedCrossRefGoogle Scholar
  86. Lin B, Koizumi A, Tanaka N et al (2008) Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci USA 105:16009–16014PubMedCrossRefGoogle Scholar
  87. Luan L, Ren C, Lau BW-M et al (2011) Y-like retinal ganglion cells innervate the dorsal raphe nucleus in the Mongolian gerbil (Meriones unguiculatus). PLoS ONE 6:e18938PubMedCrossRefGoogle Scholar
  88. Lucas RJ, Freedman MS, Munoz M et al (1999) Regulation of mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284:505–507PubMedCrossRefGoogle Scholar
  89. Lucas RJ, Douglas RH, Foster RG (2001) Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci 4:621–626PubMedCrossRefGoogle Scholar
  90. Lucas RJ, Hattar S, Takao M et al (2003) Diminished papillary light reflex at high irradiances in melanopsin-knockout mice. Science 299:245–247PubMedCrossRefGoogle Scholar
  91. Lupi D, Oster H, Thompson S et al (2008) The acute light-induction of sleep is mediated by OPN-4based photoreception. Nat Neurosci 11:1068–1073PubMedCrossRefGoogle Scholar
  92. Mawad K, Van Gelder RN (2008) Absence of long-wavelength photic potentiation of murine intrinsically photosensitive retinal ganglion cell firing in vitro. J Biol Rhythms 23:387–391PubMedCrossRefGoogle Scholar
  93. Meijer JH, Groos GA, Rusak B (1986) Luminance coding in a circadian pacemaker: the suprachiasmatic nucleus of the rat and hamster. Brain Res 382:109–118PubMedCrossRefGoogle Scholar
  94. Melyan Z, Tarttelin EE, Bellingham et al (2005) Addition of human melanopsin renders mammalian cells photoresponsive. Nature 433:741–745PubMedCrossRefGoogle Scholar
  95. Millhouse OE (1977) Optic chiasm collaterals afferent to the suprachiasmatic nucleus. Brain Res 137:351–355PubMedCrossRefGoogle Scholar
  96. Moore RY, Lenn NJ (1972) A retinohypothalamic projection in the rat. J Comp Neurol 146:1–14PubMedCrossRefGoogle Scholar
  97. Morin LP, Blanchard J (1991) Depletion of brain serotonin by 5,7-DHT modifies hamster circadian rhythm response to light. Brain Res 566:173–185PubMedCrossRefGoogle Scholar
  98. Morin LP, Blanchard J (1997) Neuropeptide Y and enkephalin immunoreactivity in retinorecipient nuclei of the hamster pretectum and thalamus. Vis Neurosci 14:765–777PubMedCrossRefGoogle Scholar
  99. Morin LP, Blanchard J (1998) Interconnections among nuclei of the subcortical visual shell: the intergeniculate leaflet is a major constituent of the hamster subcortical visual system. J Comp Neurol 396:288–309PubMedCrossRefGoogle Scholar
  100. Morin LP, Studholme KM (2011) Separation of function for classical and ganglion cell photoreceptors with respect to circadian rhythm entrainment and induction of photosomnolence. Neurosci (in press)Google Scholar
  101. Morin LP, Blanchard J, Moore RY (1992) Intergeniculate leaflet and suprachiasmatic nucleus organization and connections in the golden hamster. Vis Neurosci 8:219–230PubMedCrossRefGoogle Scholar
  102. Morin LP, Blanchard JH, Provencio I (2003) Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity. J Comp Neurol 465:401–416PubMedCrossRefGoogle Scholar
  103. Morin LP, Lituma PJ, Studholme KM (2010) Two components of nocturnal locomotor suppression by light. J Biol Rhythms 25:197–207PubMedCrossRefGoogle Scholar
  104. Müller LPS, Do MTH, Yau KW et al (2010) Tracer coupling of intrinsically photosensitive retinal ganglion cells to amacrine cells in the mouse retina. J Comp Neurol 518:4813–4824PubMedCrossRefGoogle Scholar
  105. Mure LS, Rieux C, Hattar S et al (2007) Melanopsin-dependent nonvisual responses: evidence for photopigment bistability in vivo. J Biol Rhythms 22:411–424PubMedCrossRefGoogle Scholar
  106. Mure LS, Cornut P-L, Rieux C et al (2009) Melanopsin bistability: a fly’s eye technology in the human retina. PLoS ONE 4:e5991PubMedCrossRefGoogle Scholar
  107. Nelson DE, Takahashi JS (1999) Integration and saturation within the circadian photic entrainment pathway of hamsters. Am J Physiol 46:R1351–R1361Google Scholar
  108. Nelson RJ, Zucker I (1981) Absence of extraocular photoreception in diurnal and nocturnal rodents exposed to direct sunlight. J Comp Biochem Physiol 69A:145–148CrossRefGoogle Scholar
  109. Nelson R, Famiglietti EV, Kolb H (1978) Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in cat retina. J Neurophysiol 41:472–483PubMedGoogle Scholar
  110. Nemeroff CB, Konkol RJ, Bissette G et al (1977) Analysis of the disruption in hypothalamic-pituitary regulation in rats treated neonatally with monosodium L-glutamate (MSG): evidence for involvement of tuberoinfundibular cholinergic and dopaminergic systems in neuroendocrine regulation. Endocrinol 101:613–622CrossRefGoogle Scholar
  111. Newman LA, Walker MT, Brown RL et al (2003) Melanopsin forms a functional short-wavelength photopigment. Biochem 42:12734–12738CrossRefGoogle Scholar
  112. Nickle B, Robinson PR (2007) The opsins of the vertebrate retina: insights from structural, biochemical, and evolutionary studies. Cell Mol Life Sci 64:2917–2932PubMedCrossRefGoogle Scholar
  113. Olney JW (1969) Glutamate induced retinal degeneration in neonatal mice. Electron microscopy of the acutely evolving lesion. J Neuropathol Exp Neurol 28:455–474PubMedCrossRefGoogle Scholar
  114. Oster H, Damerow S, Kiessling S et al (2006) The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab 4:163–173PubMedCrossRefGoogle Scholar
  115. Ostergaard J, Hannibal J, Fahrenkrug J (2007) Synaptic contact between melanopsin-containing retinal ganglion cells and rod bipolar cells. Invest Ophthalmol Vis Sci 48:3812–3820PubMedCrossRefGoogle Scholar
  116. Panda S, Sato TK, Castrucci AM et al (2002) Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298:2213–2216PubMedCrossRefGoogle Scholar
  117. Panda S, Provencio I, Tu DC et al (2003) Melanopsin is required for non-image-forming photic responses in blind mice. Science 301:525–527PubMedCrossRefGoogle Scholar
  118. Panda S, Nayak SK, Campo B et al (2005) Illumination of the melanopsin signaling pathway. Science 307:600–604PubMedCrossRefGoogle Scholar
  119. Peirson SN, Oster H, Jones SL et al (2007) Microarry analysis and functional genomics identify novel components of melanopsin signaling. Curr Biol 17:1363–1372PubMedCrossRefGoogle Scholar
  120. Peirson SN, Halford S, Foster RG (2009) The evolution of irradiance detection: melanopsin and the non-visual opsins. Phil Trans R Soc B 364:2849–2865PubMedCrossRefGoogle Scholar
  121. Perez-Leighton CE, Schmidt TM, Abramowitz J et al (2011) Intrinsic phototransduction persists in melanopsin-expressing ganglion cells lacking diacylglycerol-sensitive TRPC subunits. Eur J Neurosci 33:856–867PubMedCrossRefGoogle Scholar
  122. Perez-Leon JA, Warren EJ, Allen CN et al (2006) Synaptic inputs to retinal ganglion cells that set the circadian clock. Eur J Neurosci 24:1117–1123PubMedCrossRefGoogle Scholar
  123. Peterson BB, Dacey DM (1998) Morphology of human retinal ganglion cells with intraretinal axon collaterals. Vis Neurosci 15:377–387PubMedCrossRefGoogle Scholar
  124. Pickard GE (1980) Morphological characteristics of retinal ganglion cells projecting to the suprachiasmatic nucleus: a horseradish peroxidase study. Brain Res 183:458–465PubMedCrossRefGoogle Scholar
  125. Pickard GE (1982) The afferent connections of the suprachiasmatic nucleus of the golden hamster with emphasis on the retinohypothalamic projection. J Comp Neurol 211:65–83PubMedCrossRefGoogle Scholar
  126. Pickard GE (1985) Bifurcating axons of retinal ganglion cells terminate in the hypothalamic suprachiasmatic nucleus and the intergeniculate leaflet of the thalamus. Neurosci Lett 55:211–217PubMedCrossRefGoogle Scholar
  127. Pickard GE (1989) Entrainment of the circadian rhythm of wheel running activity is phase shifted by ablation of the intergeniculate leaflet. Brain Res 494:151–154PubMedCrossRefGoogle Scholar
  128. Pickard GE, Silverman AJ (1981) Direct retinal projections to the hypothalamus, piriform cortex and accessory optic nuclei in the golden hamster as demonstrated by a sensitive anterograde horseradish peroxidase technique. J Comp Neurol 196:155–172PubMedCrossRefGoogle Scholar
  129. Pickard GE, Turek FW, Lamperti AA et al (1982) The effect of neonatally administered monosodium glutamate (MSG) on the development of retinofugal projections and entrainment of circadian locomotor activity. Behav Neural Biol 34:433–444PubMedCrossRefGoogle Scholar
  130. Pickard GE, Ralph M, Menaker M (1987) The intergeniculate leaflet partially mediates the effects of light on circadian rhythms. J Biol Rhythms 2:35–56PubMedCrossRefGoogle Scholar
  131. Pickard GE, Weber TE, Scott PA et al (1996) 5HT1B receptor agonists inhibit light-induced phase shifts of the circadian activity rhythm and expression of the immediate-early gene c-fos in the suprachiasmatic nucleus. J Neurosci 16:8208–8220PubMedGoogle Scholar
  132. Pickard GE, Smith BN, Belenky M et al (1999) 5HT1B receptor-mediated presynaptic inhibition of retinal input to the suprachiasmatic nucleus. J Neurosci 19:4034–4045PubMedGoogle Scholar
  133. Pickard GE, Baver SB, Ogilvie MD et al (2009) Light-induced Fos expression in intrinsically photosensitive retinal ganglion cells in melanopsin knockout (Opn4−/−) mice. PLoS ONE 4:e4984PubMedCrossRefGoogle Scholar
  134. Pires SS, Hughes S, Turton M et al (2009) Differential expression of two distinct functional isoforms of melanopsin (Opn4) in the mammalian retina. J Neurosci 29:12332–12342PubMedCrossRefGoogle Scholar
  135. Pittendrigh CS (1954) On temperature independence in the clock-system controlling emergence time in Drosophlia. Proc Natl Acad Sci USA 40:1018–1029PubMedCrossRefGoogle Scholar
  136. Provencio I, Jiang G, de Grip WJ et al (1998) Melanopsin: an opsin in melanophores, brain and eye. Proc Natl Acad Sci USA 95:340–345PubMedCrossRefGoogle Scholar
  137. Provencio I, Rodriguez IR, Jiang G et al (2000) A novel human opsin in the inner retina. J Neurosci 20:600–605PubMedGoogle Scholar
  138. Provencio I, Rollag MD, Castrucci AM (2002) Photoreceptive net in the mammalian retina. Nature 415:493PubMedCrossRefGoogle Scholar
  139. Qiu X, Kumbalasiri T, Carlson SM et al (2005) Induction of photosensitivity by heterologous expression of melanopsin. Nature 433:745–749CrossRefGoogle Scholar
  140. Rajaraman K (2012) ON ganglion cells are intrinsically photosensitive in the tiger salamander retina. J Comp Neurol 520:100–200Google Scholar
  141. Richter CP (1965) Biological clocks in medicine and psychiatry. Charles C Thomas, SpringfieldGoogle Scholar
  142. Robinson GA, Madison RD (2004) Axotomized mouse retinal ganglion cells containing melanopsin show enhanced survival, but not enhanced axon regrowth into a peripheral nerve graft. Vis Res 44:2667–2674PubMedCrossRefGoogle Scholar
  143. Rockhill RL, Daly FJ, MacNeil MA et al (2002) The diversity of ganglion cells in a mammalian retina. J Neurosci 22:3831–3843PubMedGoogle Scholar
  144. Roecklein KA, Rohan KJ, Duncan WC et al (2009) A missense variant (P10L) of the melanopsin (OPN4) gene in seasonal affective disorder. J Affect Disorders 114:279–285PubMedCrossRefGoogle Scholar
  145. Ruby NF, Brennan TJ, Xie X et al (2002) Role of melanopsin in circadian responses to light. Science 298:2211–2213PubMedCrossRefGoogle Scholar
  146. Schmidt TM, Kofuji P (2009) Functional and morphological differences among intrinsically photosensitive retinal ganglion cells. J Neurosci 29:476–482PubMedCrossRefGoogle Scholar
  147. Schmidt TM, Kofuji P (2010) Differential cone pathway influence on intrinsically photosensitive retinal ganglion cells subtypes. J Neurosci 30:16262–16271PubMedCrossRefGoogle Scholar
  148. Schmidt TM, Kofuji P (2011) Structure and function of bistratified intrinsically photosensitive retinal ganglion cells in the mouse. J Comp Neurol 519:1492–1504PubMedCrossRefGoogle Scholar
  149. Schmidt TM, Taniguchi K, Kofuji P (2008) Intrinsic and extrinsic light responses in melanopsin-expressing cells during development. J Neurophysiol 100:371–384PubMedCrossRefGoogle Scholar
  150. Schmidt TM, Chen SK, Hattar S (2011) Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci 34:572–580Google Scholar
  151. Sekaran S, Foster RG, Lucas RJ et al (2003) Calcium imaging reveals a network of intrinsically light-sensitive inner-retinal neurons. Curr Biol 13:1290–1298PubMedCrossRefGoogle Scholar
  152. Sekaran S, Lupi D, Jones CJ et al (2005) Melanopsin-dependent photoreception provides earliest light detection in the mammalian retina. Curr Biol 15:1099–1107PubMedCrossRefGoogle Scholar
  153. Sekaran S, Lall GS, Ralphs KL et al (2007) 2-aminoethoxydiphenylborane is an acute inhibitor of directly photosensitive retinal ganglion cell activity in vitro and in vivo. J Neurosci 27:3981–3986PubMedCrossRefGoogle Scholar
  154. Smale L, Michels KM, Moore RY et al (1990) Destruction of the hamster serotonergic system by 5,7-DHT: effects on circadian rhythm phase, entrainment and response to triazolam. Brain Res 515:9–19PubMedCrossRefGoogle Scholar
  155. Sollars PJ, Smeraski CA, Kaufman JD et al (2003) Melanopsin and non-melanopsin expressing retinal ganglion cells innervate the hypothalamic suprachiasmatic nucleus. Vis Neurosci 20:601–610PubMedCrossRefGoogle Scholar
  156. Sollars PJ, Ogilvie MD, Simpson AM et al (2006) Photic entrainment is altered in the 5-HT1B receptor knockout mouse. J Biol Rhythms 21:21–32PubMedCrossRefGoogle Scholar
  157. Son GH, Chung S, Hk C et al (2008) Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production. Proc Natl Acad Sci USA 105:20970–20975PubMedCrossRefGoogle Scholar
  158. Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 69:1583–1586PubMedCrossRefGoogle Scholar
  159. Swanson LW, Cowan WM, Jones EG (1974) An autoradioradiographic study of the efferent connections of the ventral lateral geniculate nucleus in the albino rat and cat. J Comp Neurol 156:143–163PubMedCrossRefGoogle Scholar
  160. Takahashi JS, DeCoursey PJ, Bauman L et al (1984) Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhytms. Nature 308:186–188CrossRefGoogle Scholar
  161. Terman M, Terman JS (2005) Light therapy. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine, 4th edn. Elsevier, Philadelphia, pp 1424–1442CrossRefGoogle Scholar
  162. Thapan K, Arendt J, Skene DJ (2001) An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol 535:261–267PubMedCrossRefGoogle Scholar
  163. Torii M, Kojima D, Okano T et al (2007) Two isoforms of chicken melanopsins show blue light sensitivity. FEBS Lett 581:5327–5331PubMedCrossRefGoogle Scholar
  164. Tsai JW, Hannibal J, Hagiwara G et al (2009) Melanopsin as a sleep modulator: circadian gating of direct effects of light on sleep and altered sleep homeostasis in Opn4 −/− mice. PLoS Biol 7:e1000125PubMedCrossRefGoogle Scholar
  165. Usai C, Ratto GM, Bisti S (1991) Two systems of branching axons in monkey’s retina. J Comp Neurol 308:149–161PubMedCrossRefGoogle Scholar
  166. Van den Pol AN, Cao V, Heller HC (1998) Circadian system of mice integrates brief light stimuli. Am J Physiol 275:R654–R657Google Scholar
  167. Van Gelder RN (2008) Non-visual photoreception: sensing light without sight. Curr Biol 18:R38–R39PubMedCrossRefGoogle Scholar
  168. Van Gelder RN, Mawad K (2008) Illuminating the mysteries of melanopsin and circadian photoreception. J Biol Rhythms 23:394–395CrossRefGoogle Scholar
  169. Vessey JP, Lalonde MR, Mizan HA (2004) Carbenoxolone inhibition of voltage-gated Ca channels and synaptic transmission in the retina. J Neurophysiol 92:1252–1256PubMedCrossRefGoogle Scholar
  170. Vidal L, Morin LP (2007) Absence of normal photic integration in the circadian visual system: response to millisecond light flashes. J Neurosci 27:3375–3382PubMedCrossRefGoogle Scholar
  171. Viney TJ, Balint K, Hillier D et al (2007) Local retinal circuits of melanopsin-containing ganglion cells identified by transsynaptic viral tracing. Curr Biol 17:981–988PubMedCrossRefGoogle Scholar
  172. Vugler AA, Redgrave P, Semo M et al (2007) Dopamine neurons form a discrete plexus with melanopsin cells in normal and degenerating retina. Exp Neurol 205:26–35PubMedCrossRefGoogle Scholar
  173. Walker MT, Brown RL, Cronin TW et al (2008) Photochemistry of retinal chromophore in mouse melanopsin. Proc Natl Acad Sci USA 105:8861–8865PubMedCrossRefGoogle Scholar
  174. Wang JS, Kefalov VJ (2009) An alternative pathway mediates the mouse and human cone visual cycle. Curr Biol 19:1665–1669PubMedCrossRefGoogle Scholar
  175. Wang HZ, Lu QJ, Wang NL (2008) Loss of melanopsin-containing retinal ganglion cells in a rat glaucoma model. Chin Med J 121:1015–1019PubMedGoogle Scholar
  176. Wang JS, Estevez ME, Cornwall MC et al (2009) Intra-retinal visual cycle required for rapid and complete cone dark adaptation. Nat Neurosci 12:295–302PubMedCrossRefGoogle Scholar
  177. Wang X, Wang T, Jiao Y et al (2010) Requirement for an enzymatic visual cycle in Drosophlia. Curr Biol 20:93–102PubMedCrossRefGoogle Scholar
  178. Warren EJ, Allen CN, Brown RL et al (2003) Intrinsic light responses of retinal ganglion cells projecting to the circadian system. Eur J Neurosci 17:1727–1735PubMedCrossRefGoogle Scholar
  179. Warren EJ, Allen CN, Brown RL et al (2006) The light-activated signaling pathway in SCN-projecting rat retinal ganglion cells. Eur J Neurosci 23:2477–2487PubMedCrossRefGoogle Scholar
  180. Wässle H (2004) Parallel processing in the mammalian retina. Nat Rev Neurosci 5:747–757PubMedCrossRefGoogle Scholar
  181. Wiles EM, Sollars PJ, Pickard GE (2011) Intrinsically photosensitive retinal ganglion cells isolated from neonatal rat retina are depolarized by glycine. Soc Neurosci 602.14Google Scholar
  182. Witkovsky P (2004) Dopamine and retinal function. Doc Ophthalmol 108:17–40PubMedCrossRefGoogle Scholar
  183. Wong KY, Dunn FA, Berson DM (2005) Photoreceptor adaptation in intrinsically photosensitive retinal ganglion cells. Neuron 48:1001–1010PubMedCrossRefGoogle Scholar
  184. Wong KY, Dunn FA, Graham DM et al (2007) Synapic influences on rat ganglion-cell photoreceptors. J Physiol 582:279–296PubMedCrossRefGoogle Scholar
  185. Yau K-W, Hardie RC (2009) Phototransduction motifs and variations. Cell 139:247–264CrossRefGoogle Scholar
  186. Ye H, Baba MD, Peng RW et al (2011) A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 332:1565–1568PubMedCrossRefGoogle Scholar
  187. Yoshimura T, Ebihara S (1996) Spectral sensitivity of photoreceptors mediating phase-shifts of circadian rhythms in retinally degenerate CBA/J (rd/rd) and normal CBA/N (+/+) mice. J Comp Physiol 178:797–802CrossRefGoogle Scholar
  188. Zaida F, Hull JT, Peirson SN et al (2007) Short-wavelenfth light sensitivity of circadian, pupillary, and visual awareness in humans lacking an outer retina. Curr Biol 17:2122–2128CrossRefGoogle Scholar
  189. Zhang DQ, Zhou TR, McMahon DG (2007) Functional heterogeneity of retinal dopaminergic neurons underlying their multiple roles in vision. J Neurosci 27:692–699PubMedCrossRefGoogle Scholar
  190. Zhang DQ, Wong KY, Sollars PJ et al (2008) Intraretinal signaling by ganglion cell photoreceptors do dopaminergic amacrine neurons. Proc Natl Acad Sci USA 105:14181–14186PubMedCrossRefGoogle Scholar
  191. Zhang DQ, Sollars PJ, Pickard GE (2010) Signaling by ganglion cell photoreceptors to dopaminergic amacrine cells requires the photopigment melanopsin and AMP-type glutamate receptors. ARVO #1206Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.School of Veterinary Medicine and Biomedical SciencesUniversity of NebraskaLincolnUSA

Personalised recommendations