Multi-photon excitation imaging of dynamic processes in living cells and tissues



Over the past decade, two-photon microscopy has successfully made the transition from the laser laboratory into a true biological research setting. This has been due in part to the recent development of turnkey ultrafast laser systems required for two-photon microscopy, allowing ease of use in nonspecialist laboratories. The advantages of two-photon microscopy over conventional optical sectioning techniques are for greater imaging depths and reduced overall phototoxicity, as such enabling noninvasive intra-vital imaging of cellular and subcellular processes. Greater understanding of these advantages has allowed this technique to be more effectively utilized in a biological research setting. This review will cover the recent widespread uses of two-photon microscopy and highlight the wide range of physiological studies enabled in fields such as neurosciences, developmental biology, immunology, cancer biology, and endocrinology.


Two-photon microscopy Optical sectioning Fluorescence Intra-vital imaging Photoactivation Ablation Intrinsic fluorophores Second harmonic generation 



Two-photon microscopy






Numerical aperture


Non-descanned detection


Green fluorescent protein


Intra-cellular calcium concentration


Dendritic cells


Quantum dot


β-Nicotinamide adenine dinucleotide (phosphate)


Second harmonic generation


Third harmonic generation


  1. Albota MA, Xu C, Webb WW (1998) Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm. Appl Opt 37:7352–7356PubMedGoogle Scholar
  2. Alexandrakis G, Brown EB, Tong RT, McKee TD, Campbell RB, Boucher Y, Jain RK (2004) Two-photon fluorescence correlation microscopy reveals the two-phase nature of transport in tumors. Nat Med 10:203–207PubMedGoogle Scholar
  3. Araya R, Eisenthal KB, Yuste R (2006a) Dendritic spines linearize the summation of excitatory potentials. Proc Natl Acad Sci USA 103:18799–18804PubMedGoogle Scholar
  4. Araya R, Jiang J, Eisenthal KB, Yuste R (2006b) The spine neck filters membrane potentials. Proc Natl Acad Sci USA 103:17961–17966PubMedGoogle Scholar
  5. Bennett BD, Jetton TL, Ying GT, Magnuson MA, Piston DW (1996) Quantitative subcellular imaging of glucose metabolism within intact pancreatic islets. J Biol Chem 271:3647–3651PubMedGoogle Scholar
  6. Benninger RKP, Onfelt B, Neil MAA, Davis DM, French PMW (2005) Fluorescence imaging of two-photon linear dichroism: cholesterol depletion disrupts molecular orientation in cell membranes. Biophys J 88:609–622PubMedGoogle Scholar
  7. Bestvater F, Spiess E, Stobrawa G, Hacker M, Feurer T, Porwol T, Berchner-Pfannschmidt U, Wotzlaw C, Acker H (2002) Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging. J Microsc 208:108–115PubMedGoogle Scholar
  8. Bhakta NR, Oh DY, Lewis RS (2005) Calcium oscillations regulate thymocyte motility during positive selection in the three-dimensional thymic environment. Nat Immunol 6:143–151PubMedGoogle Scholar
  9. Boissonnas A, Fetler L, Zeelenberg IS, Hugues S, Amigorena S (2007) In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J Exp Med 204:345–356PubMedGoogle Scholar
  10. Bonnefont X, Lacampagne A, Sanchez-Hormigo A, Fino E, Creff A, Mathieu MN, Smallwood S, Carmignac D, Fontanaud P, Travo P, Alonso G, Courtois-Coutry N, Pincus SM, Robinson I, Mollard P (2005) Revealing the large-scale network organization of growth hormone-secreting cells. Proc Natl Acad Sci USA 102:16880–16885PubMedGoogle Scholar
  11. Boulesteix T, Pena AM, Pages N, Godeau G, Sauviat MP, Beaurepaire E, Schanne-Klein MC (2006) Micrometer scale ex vivo multiphoton imaging of unstained arterial wall structure. Cytometry A 69A:20–26Google Scholar
  12. Brakenhoff GJ, Squier J, Norris T, Bliton AC, Wade MH, Athey B (1996) Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system. J Microsc 181:253–259PubMedGoogle Scholar
  13. Brown E, McKee T, diTomaso E, Pluen A, Seed B, Boucher Y, Jain RK (2003) Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat Med 9:796–800PubMedGoogle Scholar
  14. Brown EB, Campbell RB, Tsuzuki Y, Xu L, Carmeliet P, Fukumura D, Jain RK (2001) In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med 7:864–868PubMedGoogle Scholar
  15. Cahalan MD, Gutman GA (2006) The sense of place in the immune system. Nat Immunol 7:329–332PubMedGoogle Scholar
  16. Calleja V, Alcor D, Laguerre M, Park J, Vojnovic B, Hemmings BA, Downward J, Parker PJ, Larijani B (2007) Intramolecular and intermolecular interactions of protein kinase B define its activation in vivo. PLoS Biol 5:780–791Google Scholar
  17. Cavanagh LL, Bonasio R, Mazo IB, Halin C, Cheng GY, van der Velden AWM, Cariappa A, Chase C, Russell P, Starnbach MN, Koni PA, Pillai S, Weninger W, von Andrian UH (2005) Activation of bone marrow-resident memory T cells by circulating, antigen-bearing dendritic cells. Nat Immunol 6:1029–1037PubMedGoogle Scholar
  18. Centonze VE, White JG (1998) Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys J 75:2015–2024PubMedGoogle Scholar
  19. Chaigneau E, Oheim M, Audinat E, Charpak S (2003) Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proc Natl Acad Sci USA 100:13081–13086PubMedGoogle Scholar
  20. Chaigneau E, Tiret P, Lecoq J, Ducros M, Knopfel T, Charpak S (2007) The relationship between blood flow and neuronal activity in the rodent olfactory bulb. J Neurosci 27:6452–6460PubMedGoogle Scholar
  21. Chirico G, Cannone F, Baldini G, Diaspro A (2003) Two-photon thermal bleaching of single fluorescent molecules. Biophys J 84:588–598PubMedGoogle Scholar
  22. Cox G, Kable E (2006) Second-harmonic imaging of collagen. Methods Mol Biol 319:15–39PubMedGoogle Scholar
  23. Debarre D, Supatto W, Pena AM, Fabre A, Tordjmann T, Combettes L, Schanne-Klein MC, Beaurepaire E (2006) Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat Methods 3:47–53PubMedGoogle Scholar
  24. Denk W (1994) Two-photon scanning photochemical microscopy—mapping ligand-gated ion-channel distributions. Proc Natl Acad Sci USA 91:6629–6633PubMedGoogle Scholar
  25. Denk W, Strickler JH, Webb WW (1990) 2-Photon laser scanning fluorescence microscopy. Science 248:73–76PubMedGoogle Scholar
  26. Estrada CR, Salanga M, Bielenberg DR, Harrell WB, Zurakowski D, Zhu XP, Palmer NR, Freeman MR, Adam RM (2006) Behavioral profiling of human transitional cell carcinoma ex vivo. Cancer Res 66:3078–3086PubMedGoogle Scholar
  27. FitzHarris G, Larman M, Richards C, Carroll J (2005) An increase in [Ca2+](i) is sufficient but not necessary for driving mitosis in early mouse embryos. J Cell Sci 118:4563–4575PubMedGoogle Scholar
  28. Flusberg BA, Lung JC, Cocker ED, Anderson EP, Schnitzer MJ (2005) In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope. Opt Lett 30:2272–2274PubMedGoogle Scholar
  29. Gannaway JN, Sheppard CJR (1978) 2nd-Harmonic imaging in scanning optical microscope. Opt Quant Electron 10:435–439Google Scholar
  30. Gaus K, Gratton E, Kable EPW, Jones AS, Gelissen I, Kritharides L, Jessup W (2003) Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci USA 100:15554–15559PubMedGoogle Scholar
  31. Gaus K, Le Lay S, Balasubramanian N, Schwartz MA (2006) Integrin-mediated adhesion regulates membrane order. J Cell Biol 174:725–734PubMedGoogle Scholar
  32. Gupta A, Rhodes GJ, Berg DT, Gerlitz B, Molitoris BA, Grinnell BW (2007) Activated Protein C ameliorates LPS-induced acute kidney injury and down-regulates renal iNOS and Angiotensin 2. Am J Physiol Renal Physiol 293:F245–F254PubMedGoogle Scholar
  33. Heart E, Yaney GC, Corkey RF, Schultz V, Luc E, Liu L, Deeney JT, Shirihai O, Tornheim K, Smith PJS, Corkey BE (2007) Ca2+, NAD(P)H and membrane potential changes in pancreatic beta-cells by methyl succinate: comparison with glucose. Biochem J 403:197–205PubMedGoogle Scholar
  34. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940PubMedGoogle Scholar
  35. Hopt A, Neher E (2001) Highly nonlinear photodamage in two-photon fluorescence microscopy. Biophys J 80:2029–2036PubMedGoogle Scholar
  36. Ingman WV, Wyckoff J, Gouon-Evans V, Condeelis J, Pollard JW (2006) Macrophages promote collagen fibrillogenesis around terminal end buds of the developing mammary gland. Dev Dyn 235:3222–3229PubMedGoogle Scholar
  37. Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW (2004) Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305:99–103PubMedGoogle Scholar
  38. Kirkpatrick ND, Andreou S, Hoying JB, Utzinger U (2007) Live imaging of collagen remodeling during angiogenesis. Am J Physiol Heart Circ Physiol 292:H3198–H3206PubMedGoogle Scholar
  39. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436PubMedGoogle Scholar
  40. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157PubMedGoogle Scholar
  41. Lyubovitsky JG, Spencer JA, Krasieva TB, Andersen B, Tromberg BJ (2006) Imaging corneal pathology in a transgenic mouse model using nonlinear microscopy. J Biomed Opt 11:014010Google Scholar
  42. Matsumoto-Ida M, Akao M, Takeda T, Kato M, Kita T (2006) Real-time 2-photon imaging of mitochondrial function in perfused rat hearts subjected to ischemia/reperfusion. Circulation 114:1497–1503PubMedGoogle Scholar
  43. Mempel TR, Henrickson SE, von Andrian UH (2004) T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427:154–159PubMedGoogle Scholar
  44. Molitoris BA, Sandoval RM (2005) Intravital multiphoton microscopy of dynamic renal processes. Am J Physiol Renal Physiol 288:F1084–F1089PubMedGoogle Scholar
  45. Morishige N, Petroll WM, Nishida T, Kenney MC, Jester JV (2006) Noninvasive corneal stromal collagen imaging using two-photon-generated second-harmonic signals. J Cataract Refract Surg 32:1784–1791PubMedGoogle Scholar
  46. Mrass P, Takano H, Ng LG, Daxini S, Lasaro MO, Iparraguirre A, Cavanagh LL, von Andrian UH, Ertl HCJ, Haydon PG, Weninger W (2006) Random migration precedes stable target cell interactions of tumor-infiltrating T cells. J Exp Med 203:2749–2761PubMedGoogle Scholar
  47. Neil MAA, Juskaitis R, Booth MJ, Wilson T, Tanaka T, Kawata S (2000) Adaptive aberration correction in a two-photon microscope. J Microsc 200:105–108PubMedGoogle Scholar
  48. Ngo-Anh TJ, Bloodgood BL, Lin M, Sabatini BL, Maylie J, Adelman JP (2005) SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nat Neurosci 8:642–649PubMedGoogle Scholar
  49. Nishimura N, Schaffer CB, Friedman B, Tsai PS, Lyden PD, Kleinfeld D (2006) Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke. Nat Methods 3:99–108PubMedGoogle Scholar
  50. Nishimura N, Schaffer CB, Friedman B, Lyden PD, Kleinfeld D (2007) Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proc Natl Acad Sci USA 104:365–370PubMedGoogle Scholar
  51. Pardo B, Contreras L, Serrano A, Ramos M, Kobayashi K, Iijima M, Saheki T, Satrustegui J (2006) Essential role of aralar in the transduction of small Ca2+ signals to neuronal mitochondria. J Biol Chem 281:1039–1047PubMedGoogle Scholar
  52. Patterson GH, Piston DW (2000) Photobleaching in two-photon excitation microscopy. Biophys J 78:2159–2162PubMedGoogle Scholar
  53. Patterson GH, Knobel SM, Arkhammar P, Thastrup O, Piston DW (2000) Separation of the glucose-stimulated cytoplasmic mitochondrial NAD(P)H responses in pancreatic islet beta cells. Proc Natl Acad Sci USA 97:5203–5207PubMedGoogle Scholar
  54. Pereira L, Matthes J, Schuster I, Valdivia HH, Herzig S, Richard S, Gomez AM (2006) Mechanisms of [Ca2+](i) transient decrease in cardiomyopathy of db/db type 2 diabetic mice. Diabetes 55:608–615PubMedGoogle Scholar
  55. Peti-Peterdi J (2005) Multiphoton imaging of renal tissues in vitro. Am J Physiol Renal Physiol 288:F1079–F1083PubMedGoogle Scholar
  56. Phan TG, Grigorova I, Okada T, Cyster JG (2007) Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat Immunol 8:992–1000PubMedGoogle Scholar
  57. Piston DW, Summers RG, Knobel SM, Morrill JB (1998) Characterization of involution during sea urchin gastrulation using two-photon excited photorelease and confocal microscopy. Microsc Microanal 4:404–414PubMedGoogle Scholar
  58. Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ (2006) Collagen reorganization at the tumor–stromal interface facilitates local invasion. BMC Med 4:30Google Scholar
  59. Rocheleau JV, Head WS, Piston DW (2004a) Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response. J Biol Chem 279:31780–31787PubMedGoogle Scholar
  60. Rocheleau JV, Walker GM, Head WS, McGuinness OP, Piston DW (2004b) Microfluidic glucose stimulation reveals limited coordination of intracellular Ca2+ activity oscillations in pancreatic islets. Proc Natl Acad Sci USA 101:12899–12903PubMedGoogle Scholar
  61. Rubart M (2004) Two-photon microscopy of cells and tissue. Circ Res 95:1154–1166PubMedGoogle Scholar
  62. Rubart M, Wang EX, Dunn KW, Field LJ (2003) Two-photon molecular excitation imaging of Ca2+ transients in Langendorff-perfused mouse hearts. Am J Physiol Cell Physiol 284:C1654–C1668PubMedGoogle Scholar
  63. Rueckel M, Mack-Bucher JA, Denk W (2006) Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing. Proc Natl Acad Sci USA 103:17137–17142PubMedGoogle Scholar
  64. Schaffer CB, Friedman B, Nishimura N, Schroeder LF, Tsai PS, Ebner FF, Lyden PD, Kleinfeld D (2006) Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. PLoS Biol 4:258–270Google Scholar
  65. Schonle A, Hell SW (1998) Heating by absorption in the focus of an objective lens. Opt Lett 23:325–327PubMedGoogle Scholar
  66. Schwickert TA, Lindquist RL, Shakhar G, Livshits G, Skokos D, Kosco-Vilbois MH, Dustin ML, Nussenzweig MC (2007) In vivo imaging of germinal centres reveals a dynamic open structure. Nature 446:83–87PubMedGoogle Scholar
  67. Shakhar G, Lindquist RL, Skokos D, Dudziak D, Huang JH, Nussenzweig MC, Dustin ML (2005) Stable T cell-dendritic cell interactions precede the development of both tolerance and immunity in vivo. Nat Immunol 6:707–714PubMedGoogle Scholar
  68. Shaner NC, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp red fluorescent protein. Nat Biotechnol 22:1567–1572PubMedGoogle Scholar
  69. Shu XK, Shaner NC, Yarbrough CA, Tsien RY, Remington SJ (2006) Novel chromophores and buried charges control color in mFruits. Biochemistry 45:9639–9647PubMedGoogle Scholar
  70. Skala MC, Squirrell JM, Vrotsos KM, Eickhoff VC, Gendron-Fitzpatrick A, Eliceiri KW, Ramanujam N (2005) Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues. Cancer Res 65:1180–1186PubMedGoogle Scholar
  71. Smith AJ, Blumenfeld H, Behar KL, Rothman DL, Shulman RG, Hyder F (2002) Cerebral energetics and spiking frequency: the neurophysiological basis of fMRI. Proc Natl Acad Sci USA 99:10765–10770PubMedGoogle Scholar
  72. Spiess E, Bestvater F, Heckel-Pompey A, Toth K, Hacker M, Stobrawa G, Feurer T, Wotzlaw C, Berchner-Pfannschmidt U, Porwol T, Acker H (2005) Two-photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP. J Microsc 217:200–204PubMedGoogle Scholar
  73. Squirrell JM, Wokosin DL, White JG, Bavister BD (1999) Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat Biotechnol 17:763–767PubMedGoogle Scholar
  74. Stetzkowski-Marden F, Gaus K, Recouvreur M, Cartaud A, Cartaud J (2006) Agrin elicits membrane lipid condensation at sites of acetylcholine receptor clusters in C2C12 myotubes. J Lipid Res 47:2121–2133PubMedGoogle Scholar
  75. Stroh M, Zimmer JP, Duda DG, Levchenko TS, Cohen KS, Brown EB, Scadden DT, Torchilin VP, Bawendi MG, Fukumura D, Jain RK (2005) Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med 11:678–682PubMedGoogle Scholar
  76. Summers RG, Piston DW, Harris KM, Morrill JB (1996) The orientation of first cleavage in the sea urchin embryo, Lytechinus variegatus, does not specify the axes of bilateral symmetry. Dev Biol 175:177–183PubMedGoogle Scholar
  77. Supatto W, Debarre D, Moulia B, Brouzes E, Martin JL, Farge E, Beaurepaire E (2005) In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses. Proc Natl Acad Sci USA 102:1047–1052PubMedGoogle Scholar
  78. Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50:823–839PubMedGoogle Scholar
  79. Takano T, Tian GF, Peng WG, Lou NH, Libionka W, Han XN, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9:260–267PubMedGoogle Scholar
  80. Tal E, Oron D, Silberberg Y (2005) Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing. Opt Lett 30:1686–1688PubMedGoogle Scholar
  81. Theer P, Hasan MT, Denk W (2003) Two-photon imaging to a depth of 1000 μm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt Lett 28:1022–1024PubMedGoogle Scholar
  82. Thompson HGR, Mih JD, Krasieva TB, Tromberg BJ, George SC (2006) Epithelial-derived TGF-beta 2 modulates basal and wound-healing subepithelial matrix homeostasis. Am J Physiol Lung Cell Mol Physiol 291:L1277–L1285PubMedGoogle Scholar
  83. Tsai TH, Lin CY, Tsai HJ, Chen SY, Tai SP, Lin KH, Sun CK (2006) Biomolecular imaging based on far-red fluorescent protein with a high two-photon excitation action cross section. Opt Lett 31:930–932PubMedGoogle Scholar
  84. Valdmanis JA, Fork RL (1986) Design considerations for a femtosecond pulse laser balancing self phase modulation, group-velocity dispersion, saturable absorption, and saturable gain. IEEE J Quant Electron 22:112–118Google Scholar
  85. Voiculescu O, Bertocchini F, Wolpert L, Keller RE, Stern CD (2007) The amniote primitive streak is defined by epithelial cell intercalation before gastrulation. Nature 449:1049–1052PubMedGoogle Scholar
  86. Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10:993–998PubMedGoogle Scholar
  87. Wise FW, Walmsley IA, Tang CL (1988) Simultaneous formation of solitons and dispersive waves in a femtosecond ring dye-laser. Opt Lett 13:129–131PubMedGoogle Scholar
  88. Wokosin DL, Loughrey CM, Smith GL (2004) Characterization of a range of fura dyes with two-photon excitation. Biophys J 86:1726–1738PubMedGoogle Scholar
  89. Wyckoff JB, Wang Y, Lin EY, Li JF, Goswami S, Stanley ER, Segall JE, Pollard JW, Condeelis J (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67:2649–2656PubMedGoogle Scholar
  90. Xu C, Webb WW (1996) Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J Opt Soc Am B Opt Phys 13:481–491Google Scholar
  91. Xu C, Zipfel W, Shear JB, Williams RM, Webb WW (1996) Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci USA 93:10763–10768PubMedGoogle Scholar
  92. Yuste R, Denk W (1995) Dendritic spines as basic functional units of neuronal integration. Nature 375:682–684PubMedGoogle Scholar
  93. Zhang QH, Piston DW, Goodman RH (2002) Regulation of corepressor function by nuclear NADH. Science 295:1895–1897PubMedGoogle Scholar
  94. Zhang QH, Wang SY, Nottke AC, Rocheleau JV, Piston DW, Goodman RH (2006) Redox sensor CtBP mediates hypoxia-induced tumor cell migration. Proc Natl Acad Sci USA 103:9029–9033PubMedGoogle Scholar
  95. Zipfel WR, Omalley JP, VanHelden D, Williams RM, Guild JB, Salpeter MM, Webb WW (1996) Characterization of spontaneous calcium waves and sparks in primary cultures of fetal rat myotubes using two photon excitation point and line scanning microscopy. Biophys J 70:WP283Google Scholar
  96. Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW (2003) Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci USA 100:7075–7080PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleUSA

Personalised recommendations