Advertisement

pp 1-27 | Cite as

Gas Network Benchmark Models

  • Peter Benner
  • Sara Grundel
  • Christian Himpe
  • Christoph Huck
  • Tom Streubel
  • Caren Tischendorf
Chapter
Part of the Differential-Algebraic Equations Forum book series

Abstract

The simulation of gas transportation networks becomes increasingly more important as its use-cases broaden to more complex applications. Classically, the purpose of the gas network was the transportation of predominantly natural gas from a supplier to the consumer for long-term scheduled volumes. With the rise of renewable energy sources, gas-fired power plants are often chosen to compensate for the fluctuating nature of the renewables, due to their on-demand power generation capability. Such an only short-term plannable supply and demand setting requires sophisticated simulations of the gas network prior to the dispatch to ensure the supply of all customers for a range of possible scenarios and to prevent damages to the gas network. In this work we describe the modeling of gas networks and present benchmark systems to test implementations and compare new or extended models.

Keywords

Flow network Gas network Gas transport Isothermal Euler equation Natural gas Pipeline 

Mathematics Subject Classification (2010)

76N15 68U20 35L60 

Notes

Acknowledgements

Supported by the German Federal Ministry for Economic Affairs and Energy, in the joint project: “MathEnergy – Mathematical Key Technologies for Evolving Energy Grids”, sub-project: Model Order Reduction (Grant number: 0324019B).

The work for the article has been conducted within the Research Campus MODAL funded by the German Federal Ministry of Education and Research (BMBF) (fund number 05M14ZAM).

We also acknowledge funding through the DFG CRC/Transregio 154 “Mathematical Modelling, Simulation and Optimization using the Example of Gas Networks”, Subproject C02.

Supplementary material

11221_2018_5_MOESM1_ESM.zip (774 kb)
(ZIP 774 kb)

References

  1. 1.
    Azevedo-Perdicoúlis, T.-P., Jank, G.: Modelling aspects of describing a gas network through a DAE system. In: Proceedings of the 3rd IFAC Symposium on System Structure and Control, vol. 40(20), pp. 40–45 (2007). https://doi.org/10.3182/20071017-3-BR-2923.00007
  2. 2.
    Chaczykowski, M.: Sensitivity of pipeline gas flow model to the selection of the equation of state. Chem. Eng. Res. Des. 87, 1596–1603 (2009). https://doi.org/10.1016/j.cherd.2009.06.008
  3. 3.
    Chodanovich, I.J., Odischarija, G.E.: Analiž žavisimosti dlja koeffizienta gidravličeskogo soprotivlenija (analysis of the dependency of the pipe friction factor). Gažovaja Promyshlennost 9(11), 38–42 (1964)Google Scholar
  4. 4.
    Colebrook, C.F.: Turbulent flows in pipes, with particular reference to the transition region between smooth and rough pipe laws. J. Inst. Civ. Eng. 11, 133–156 (1939)Google Scholar
  5. 5.
    Domschke, P., Geißler, B., Kolb, O., Lang, J., Martin, A., Morsi, A.: Combination of nonlinear and linear optimization of transient gas networks. INFORMS J. Comput. 23(4), 605–617 (2011).  https://doi.org/10.1287/ijoc.1100.0429
  6. 6.
    Dymkou, S., Leugering, G., Jank, G.: Repetitive processes modelling of gas transport networks. In: 2007 International Workshop on Multidimensional (nD) Systems, pp. 101–108 (2007).  https://doi.org/10.1109/NDS.2007.4509556
  7. 7.
    Ehrhardt, K., Steinbach, M.C.: Nonlinear optimization in gas networks. In: Bock, H.G., Phu, H.X., Kostina, E., Rannacher, R. (eds.) Modeling, Simulation and Optimization of Complex Processes. Proceedings of the International Conference on High Performance Scientific Computing, pp. 139–148. Springer, Berlin (2005). https://doi.org/10.1007/3-540-27170-8_11
  8. 8.
    Fügenschuh, A., Geißler, B., Gollmer, R., Morsi, A., Pfetsch, M.E., Rövekamp, J., Schmidt, M., Spreckelsen, K., Steinbach, M.C.: Chapter 2: physical and technical fundamentals of gas networks. In: Koch, T., Hiller, B., Pfetsch, M.E., Schewe, L. (eds.) Evaluating Gas Network Capacities. MOS-SIAM Series on Optimization, pp. 17–43. SIAM, Philadelphia (2015). https://doi.org/10.1137/1.9781611973693.ch2
  9. 9.
    Grundel, S., Jansen, L.: Efficient simulation of transient gas networks using IMEX integration schemes and MOR methods. In: 54th IEEE Conference on Decision and Control (CDC), pp. 4579–4584 (2015).  https://doi.org/10.1109/CDC.2015.7402934
  10. 10.
    Grundel, S., Hornung, N., Klaassen, B., Benner, P., Clees, T.: Computing surrogates for gas network simulation using model order reduction. In: Surrogate-Based Modeling and Optimization. Applications in Engineering, pp. 189–212. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7551-4_9
  11. 11.
    Grundel, S., Jansen, L., Hornung, N., Clees, T., Tischendorf, C., Benner, P.: Model order reduction of differential algebraic equations arising from the simulation of gas transport networks. In: Progress in Differential-Algebraic Equations. Differential-Algebraic Equations Forum, pp. 183–205. Springer, Berlin (2014). https://doi.org/10.1007/978-3-662-44926-4_9
  12. 12.
    Grundel, S., Hornung, N., Roggendorf, S.: Numerical aspects of model order reduction for gas transportation networks. In: Simulation-Driven Modeling and Optimization. Proceedings in Mathematics & Statistics, vol. 153, pp. 1–28. Springer, Basel (2016). https://doi.org/10.1007/978-3-319-27517-8_1
  13. 13.
    Herty, M.: Modeling, simulation and optimization of gas networks with compressors. Netw. Heterog. Media 2(1), 81–97 (2007).  https://doi.org/10.3934/nhm.2007.2.81
  14. 14.
    Herty, M., Mohring, J., Sachers, V.: A new model for gas flow in pipe networks. Math. Methods Appl. Sci. 33, 845–855 (2010).  https://doi.org/10.1002/mma.1197
  15. 15.
    Hofer, P.: Beurteilung von Fehlern in Rohrnetzberechnungen (error evaluation in calculation of pipelines). GWF–Gas/Erdgas 114(3), 113–119 (1973)Google Scholar
  16. 16.
    Huck, C., Tischendorf, C.: Topology motivated discretization of hyperbolic PDAEs describing flow networks. Technical report, Humboldt-Universität zu Berlin (2017). Available from: https://opus4.kobv.de/opus4-trr154/frontdoor/index/index/docId/137
  17. 17.
    Humpola, J., Joormann, I., Kanelakis, N., Oucherif, D., Pfetsch, M.E., Schewe, L., Schmidt, M., Schwarz, R., Sirvent, M. GasLib – a library of gas network instances. Technical report, Mathematical Optimization Society (2017). Available from: http://www.optimization-online.org/DB_HTML/2015/11/5216.html
  18. 18.
    Králik, J., Stiegler, P., Vostrý, Z., Záworka, J.: Dynamic Modeling of Large-Scale Networks with Application to Gas Distribution. Automation and Control, vol. 6. Elsevier, New York (1988)Google Scholar
  19. 19.
    LeVeque, R.J.: Nonlinear conservation laws and finite volume methods. In: Steiner, O., Gautschy, A. (eds.) Computational Methods for Astrophysical Fluid Flow. Saas-Fee Advanced Courses, vol. 27, pp. 1–159. Springer, Berlin (1997). https://doi.org/10.1007/3-540-31632-9_1
  20. 20.
    LIWACOM Informationstechnik GmbH and SIMONE research group s. r. o., Essen. SIMONE Software. Gleichungen und Methoden (2004). Available from: https://www.liwacom.de
  21. 21.
    Mischner, J., Fasold, H.G., Heymer, J. (eds.): gas2energy.net. Edition gas for energy. DIV (2016). Available from: https://www.di-verlag.de/de/gas2energy.net2
  22. 22.
    Moritz, S.: A mixed integer approach for the transient case of gas network optimization. Ph.D. thesis, Technische Universität, Darmstadt (2007). Available from: http://tuprints.ulb.tu-darmstadt.de/785/
  23. 23.
    Nekrasov, B.: Hydraulics for Aeronautical Engineers. Peace Publishers, Moscow (1969). Available from: https://archive.org/details/in.ernet.dli.2015.85993
  24. 24.
    Nikuradse, J.: Gesetzmäßigkeiten der turbulenten Strömung in glatten Rohren. VDI-Forschungsheft 356, 1–36 (1932)Google Scholar
  25. 25.
    Osiadacz, A.: Simulation of transient gas flows in networks. Int. J. Numer. Methods Fluids 4, 13–24 (1984).  https://doi.org/10.1002/fld.1650040103
  26. 26.
    Osiadacz, A.J., Chaczykowski, M.: Verification of transient gas flow simulation model. In: PSIG Annual Meeting, pp. 1–10 (2010). Available from: https://www.onepetro.org/conference-paper/PSIG-1010
  27. 27.
    Papay, J.: A Termelestechnologiai Parameterek Valtozasa a Gazlelepk Muvelese Soran, pp. 267–273. Tud. Kuzl., Budapest (1968)Google Scholar
  28. 28.
    Pfetsch, M.E., Fügenschuh, A., Geißler, B., Geißler, N., Gollmer, R., Hiller, B., Humpola, J., Koch, T., Lehmann, T., Martin, A., Morsi, A., Rövekamp, J., Schewe, L., Schmidt, M., Schultz, R., Schwarz, R., Schweiger, J., Stangl, C., Steinbach, M.C., Vigerske, S., Willert, B.M.: Validation of nominations in gas network optimization: models, methods, and solutions. Optim. Methods Softw. (2014). https://doi.org/10.1080/10556788.2014.888426
  29. 29.
    van der Hoeven, T.: Math in gas and the art of linearization. Ph.D. thesis, University of Groningen (2004). Available from: http://hdl.handle.net/11370/0bbb8138-6d96-4d79-aac3-e46983d1fd33
  30. 30.
    Zigrang, D.J., Sylvester, N.D.: A review of explicit friction factor equations. J. Energy Resour. Technol. 107(2), 280–283 (1985). https://doi.org/10.1115/1.3231190 Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Peter Benner
    • 1
  • Sara Grundel
    • 1
  • Christian Himpe
    • 1
  • Christoph Huck
    • 2
  • Tom Streubel
    • 3
    • 4
  • Caren Tischendorf
    • 2
  1. 1.Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
  2. 2.Department of MathematicsHumboldt-Universität zu BerlinBerlinGermany
  3. 3.Department of Optimization at Zuse Institute BerlinBerlinGermany
  4. 4.Department of MathematicsHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations