Advertisement

pp 1-30 | Cite as

Emerging Technologies and Materials for High-Resolution 3D Printing of Microfluidic Chips

Chapter
  • 263 Downloads
Part of the Advances in Biochemical Engineering/Biotechnology book series

Abstract

In recent years, 3D printing has had a huge impact on the field of biotechnology: from 3D-printed pharmaceuticals to tissue engineering and microfluidic chips. Microfluidic chips are of particular interest and importance for the field of biotechnology, since they allow for the analysis and screening of a wide range of biomolecules – including single cells, proteins, and DNA. The fabrication of microfluidic chips has historically been time-consuming, however, and is typically limited to 2.5 dimensional structures and a restricted palette of well-known materials. Due to the high surface-to-volume ratios in microfluidic chips, the nature of the chip material is of paramount importance to the final system behavior. With the emergence of 3D printing, however, a wide range of microfluidic systems are now being printed for the first time in a manner that facilitates flexibility while minimizing time and cost. Nevertheless, resolution and material choices still remain challenges and in the focus of current research, aiming for (1) 3D printing with high resolutions in the range of tens of micrometers and (2) a wider range of available materials for these high-resolution prints. The first part of this chapter highlights recent emerging technologies in the field of high-resolution printing via stereolithography (SL) and 2-photon polymerization (2PP) and seeks to identify particularly interesting emerging technologies which could have a major impact on the field in the near future. The second part of this chapter highlights current developments in the field of materials that are used for these high-resolution 3D printing technologies.

Graphical Abstract

Keywords

2-photonpolymerization 3D printed microfluidics Materials Stereolithography 

Notes

Acknowledgments

BER thanks the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) for funding through the Center for Excellence livMatS Exec 2193/1 – 390951807.

References

  1. 1.
    Whitesides GM (2006) Nature 442:368Google Scholar
  2. 2.
    Berthier J, Silberzan P (2010) Microfluidics for biotechnology. Artech HouseGoogle Scholar
  3. 3.
    Gervais L, de Rooij N, Delamarche E (2011) Adv Mater 23:H151Google Scholar
  4. 4.
    Holmes D, Gawad S (2010) Hughes MP, Hoettges KF (eds) Microengineering in biotechnology. Humana Press, Totowa, pp 55–80Google Scholar
  5. 5.
    Manz A, Fettinger JC, Verpoorte E, Lüdi H, Widmer HM, Harrison DJ (1991) TrAC Trends Anal Chem 10:144Google Scholar
  6. 6.
    Harrison DJ, Manz A, Fan Z, Luedi H, Widmer HM (1992) Anal Chem 64:1926Google Scholar
  7. 7.
    De Mello A (2002) Lab Chip 2:31NGoogle Scholar
  8. 8.
    Duffy DC, McDonald JC, Schueller OJ, Whitesides GM (1998) Anal Chem 70:4974Google Scholar
  9. 9.
    Zhao S, Cong H, Pan T (2009) Lab Chip 9:1128Google Scholar
  10. 10.
    Hong T-F, Ju W-J, Wu M-C, Tai C-H, Tsai C-H, Fu L-M (2010) Microfluid Nanofluid 9:1125Google Scholar
  11. 11.
    Chen Y, Zhang L, Chen G (2008) Electrophoresis 29:1801Google Scholar
  12. 12.
    Waldbaur A, Rapp H, Lange K, Rapp BE (2011) Anal Methods 3:2681Google Scholar
  13. 13.
    Kotz F, Risch P, Helmer D, Rapp BE (2018) Micromachines 9:115Google Scholar
  14. 14.
    Li F, Macdonald NP, Guijt RM, Breadmore MC (2017) Anal Chem 89:12805Google Scholar
  15. 15.
    Su W, Cook BS, Fang Y, Tentzeris MM (2016) Sci Rep 6:35111Google Scholar
  16. 16.
    Waheed S, Cabot JM, Macdonald NP, Lewis T, Guijt RM, Paull B, Breadmore MC (2016) Lab Chip 16:1993Google Scholar
  17. 17.
    Sochol RD, Sweet E, Glick CC, Venkatesh S, Avetisyan A, Ekman KF, Raulinaitis A, Tsai A, Wienkers A, Korner K, Hanson K, Long A, Hightower BJ, Slatton G, Burnett DC, Massey TL, Iwai K, Lee LP, Pister KSJ, Lin L (2016) Lab Chip 16:668Google Scholar
  18. 18.
    Nielsen AV, Beauchamp MJ, Nordin GP, Woolley AT (2020) Ann Rev Anal Chem 13Google Scholar
  19. 19.
    Shallan AI, Smejkal P, Corban M, Guijt RM, Breadmore MC (2014) Anal Chem 86:3124Google Scholar
  20. 20.
    Rogers CI, Qaderi K, Woolley AT, Nordin GP (2015) Biomicrofluidics 9:016501Google Scholar
  21. 21.
    Lee Y-S, Bhattacharjee N, Folch A (2018) Lab Chip 18:1207Google Scholar
  22. 22.
    Enders A, Siller IG, Urmann K, Hoffmann MR, Bahnemann J (2019) Small 15:1804326Google Scholar
  23. 23.
    Grigoryan B, Paulsen SJ, Corbett DC, Sazer DW, Fortin CL, Zaita AJ, Greenfield PT, Calafat NJ, Gounley JP, Ta AH, Johansson F, Randles A, Rosenkrantz JE, Louis-Rosenberg JD, Galie PA, Stevens KR, Miller JS (2019) Science 364:458Google Scholar
  24. 24.
    Lee W, Kwon D, Choi W, Jung GY, Jeon S (2015) Sci Rep 5:7717Google Scholar
  25. 25.
    Shemesh J, Jalilian I, Shi A, Yeoh GH, Tate MLK, Warkiani ME (2015) Lab Chip 15:4114Google Scholar
  26. 26.
    Hull CW (1986) Patent US4575330Google Scholar
  27. 27.
    Kotz F, Arnold K, Bauer W, Schild D, Keller N, Sachsenheimer K, Nargang TM, Richter C, Helmer D, Rapp BE (2017) Nature 544:337Google Scholar
  28. 28.
    Gong H, Bickham BP, Woolley AT, Nordin GP (2017) Lab Chip 17:2899Google Scholar
  29. 29.
    Lee MP, Cooper GJT, Hinkley T, Gibson GM, Padgett MJ, Cronin L (2015) Sci Rep 5:1Google Scholar
  30. 30.
    Xu G, Zhao W, Tang Y, Lu B (2006) Rapid Prototyp J 12:12Google Scholar
  31. 31.
    Behroodi E, Latifi H, Najafi F (2019) Sci Rep 9:1Google Scholar
  32. 32.
    Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R (2017) Chem Rev 117:10212Google Scholar
  33. 33.
    Au AK, Huynh W, Horowitz LF, Folch A (2016) Angew Chem Int Ed 55:3862Google Scholar
  34. 34.
    Bertsch A, Jiguet S, Bernhard P, Renaud P (2002) MRS Online Proceedings Library, p 759Google Scholar
  35. 35.
    Gong H, Beauchamp M, Perry S, Woolley AT, Nordin GP (2015) RSC Adv 5:106621Google Scholar
  36. 36.
    Jacobs PF (1992) Rapid prototyping and manufacturing: fundamentals of stereolithography. Society of Manufacturing EngineersGoogle Scholar
  37. 37.
    Beauchamp MJ, Gong H, Woolley AT, Nordin GP (2018) Micromachines (Basel) 9:9Google Scholar
  38. 38.
    Beauchamp MJ, Nielsen AV, Gong H, Nordin GP, Woolley AT (2019) Anal Chem 91:7418Google Scholar
  39. 39.
    Gong H, Woolley AT, Nordin GP (2019) Biomicrofluidics 13:014106Google Scholar
  40. 40.
    Männel MJ, Selzer L, Bernhardt R, Thiele J (2019) Adv Mater Technol 4:1800408Google Scholar
  41. 41.
    Waldbaur A, Carneiro B, Hettich P, Wilhelm E, Rapp BE (2013) Microfluid Nanofluid 15:625Google Scholar
  42. 42.
    Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, Chen K, Pinschmidt R, Rolland JP, Ermoshkin A (2015) Science 347:1349Google Scholar
  43. 43.
    de Beer MP, van der Laan HL, Cole MA, Whelan RJ, Burns MA, Scott TF (2019) Sci Adv 5:eaau8723Google Scholar
  44. 44.
    Walker DA, Hedrick JL, Mirkin CA (2019) Science 366:360Google Scholar
  45. 45.
    Johnson AR, Caudill CL, Tumbleston JR, Bloomquist CJ, Moga KA, Ermoshkin A, Shirvanyants D, Mecham SJ, Luft JC, DeSimone JM (2016) PLoS One 11:e0162518Google Scholar
  46. 46.
    Kelly BE, Bhattacharya I, Heidari H, Shusteff M, Spadaccini CM, Taylor HK (2019) Science 363:1075Google Scholar
  47. 47.
    Bernal PN, Delrot P, Loterie D, Li Y, Malda J, Moser C, Levato R (2019) Adv Mater 31:1904209Google Scholar
  48. 48.
    Maruo S, Nakamura O, Kawata S (1997) vol 22. OSA Publishing, p 132Google Scholar
  49. 49.
    Perrucci F, Bertana V, Marasso SL, Scordo G, Ferrero S, Pirri CF, Cocuzza M, El-Tamer A, Hinze U, Chichkov BN, Canavese G, Scaltrito L (2018) Microelectron Eng 195:95Google Scholar
  50. 50.
    Alsharhan AT, Acevedo R, Warren R, Sochol RD (2019) Lab Chip 19:2799Google Scholar
  51. 51.
    Lamont AC, Alsharhan AT, Sochol RD (2019) Sci Rep 9:1Google Scholar
  52. 52.
    Schoch RB, Han J, Renaud P (2008) Rev Mod Phys 80:839Google Scholar
  53. 53.
    Vanderpoorten O, Peter Q, Challa PK, Keyser UF, Baumberg J, Kaminski CF, Knowles TPJ (2019) Microsyst Nanoeng 5:1Google Scholar
  54. 54.
    Hengsbach S, Lantada AD (2014) Biomed Microdevices 16:617Google Scholar
  55. 55.
    Amato L, Gu Y, Bellini N, Eaton SM, Cerullo G, Osellame R (2012) Lab Chip 12:1135Google Scholar
  56. 56.
    Pearre BW, Michas C, Tsang J-M, Gardner TJ, Otchy TM (2019) Addit Manuf 30:100887Google Scholar
  57. 57.
    Straub M, Gu M (2002) Opt Lett 27:1824Google Scholar
  58. 58.
    Ovsianikov A, Deiwick A, van Vlierberghe S, Dubruel P, Möller L, Dräger G, Chichkov B (2011) Biomacromolecules 12:851Google Scholar
  59. 59.
    Skylar-Scott MA, Liu M-C, Wu Y, Dixit A, Yanik MF (2016) Adv Healthc Mater 5:1233Google Scholar
  60. 60.
    Thiel M, Reiner RR, Niesler F, Tanguy Y (2016) Method for producing a three-dimensional structure, US20160114530A1Google Scholar
  61. 61.
    Kato J, Takeyasu N, Adachi Y, Sun H-B, Kawata S (2005) Appl Phys Lett 86:044102Google Scholar
  62. 62.
    Dong X-Z, Zhao Z-S, Duan X-M (2007) Appl Phys Lett 91:124103Google Scholar
  63. 63.
    Takahashi H, Hasegawa S, Takita A, Hayasaki Y (2008) Opt Express 16:16592Google Scholar
  64. 64.
    Jenness NJ, Wulff KD, Johannes MS, Padgett MJ, Cole DG, Clark RL (2008) Opt Express 16:15942Google Scholar
  65. 65.
    Geng Q, Wang D, Chen P, Chen S-C (2019) Nat Commun 10:1Google Scholar
  66. 66.
    Vizsnyiczai G, Kelemen L, Ormos P (2014) Opt Express 22:24217Google Scholar
  67. 67.
    Hahn V, Kiefer P, Frenzel T, Qu J, Blasco E, Barner-Kowollik C, Wegener M (2020) Adv Funct Mater:1907795Google Scholar
  68. 68.
    Stichel T, Hecht B, Houbertz R, Sextl G (2015) Appl Phys A Mater Sci Process 121:187Google Scholar
  69. 69.
    Stichel T, Hecht B, Steenhusen S, Houbertz R, Sextl G (2016) Opt Lett 41:4269Google Scholar
  70. 70.
    Jonušauskas L, Rekštytė S, Malinauskas M (2014) OE 53:125102Google Scholar
  71. 71.
    Tan Y, Chu W, Wang P, Li W, Qi J, Xu J, Wang Z, Cheng Y (2018) Phys Scr 94:015501Google Scholar
  72. 72.
    Carve M, Wlodkowic D (2018) Micromachines 9:91Google Scholar
  73. 73.
    Fouassier JP, Lalevée J (2014) Polymers 6:2588Google Scholar
  74. 74.
    Van den Driesche S, Lucklum F, Bunge F, Vellekoop MJ (2018) Micromachines 9:71Google Scholar
  75. 75.
    Macdonald NP, Zhu F, Hall CJ, Reboud J, Crosier PS, Patton EE, Wlodkowic D, Cooper JM (2016) Lab Chip 16:291Google Scholar
  76. 76.
    Leigh SJ, Gilbert HTJ, Barker IA, Becker JM, Richardson SM, Hoyland JA, Covington JA, Dove AP (2013) Biomacromolecules 14:186Google Scholar
  77. 77.
    Männel MJ, Fischer C, Thiele J (2020) Micromachines 11:246Google Scholar
  78. 78.
    Warr C, Valdoz JC, Bickham BP, Knight CJ, Franks NA, Chartrand N, Van Ry PM, Christensen KA, Nordin GP, Cook AD (2020) ACS Appl Bio Mater 3:2239Google Scholar
  79. 79.
    Kitson PJ, Marie G, Francoia J-P, Zalesskiy SS, Sigerson RC, Mathieson JS, Cronin L (2018) Science 359:314Google Scholar
  80. 80.
    Hülsenberg D, Harnisch A, Bismarck A (2005) Microstructuring of glasses. Springer, BerlinGoogle Scholar
  81. 81.
    Klein J, Stern M, Franchin G, Kayser M, Inamura C, Dave S, Weaver JC, Houk P, Colombo P, Yang M, Oxman N (2015) 3D printing and additive manufacturing. 2:92Google Scholar
  82. 82.
    Kotz F, Risch P, Helmer D, Rapp BE (2019) Adv Mater 31:1805982Google Scholar
  83. 83.
    Kotz F, Plewa K, Bauer W, Schneider N, Keller N, Nargang T, Helmer D, Sachsenheimer K, Schäfer M, Worgull M, Greiner C, Richter C, Rapp BE (2016) Adv Mater 28:4646Google Scholar
  84. 84.
    Kotz F, Helmer D, Rapp BE (2018) Int Soc Opt Photo:104910AGoogle Scholar
  85. 85.
    Kotz F, Plewa K, Bauer W, Hanemann T, Waldbaur A, Wilhelm E, Neumann C, Rapp BE (2015) Int Soc Opt Photo:932003–932006Google Scholar
  86. 86.
    Kotz F, Schneider N, Striegel A, Wolfschläger A, Keller N, Worgull M, Bauer W, Schild D, Milich M, Greiner C, Helmer D, Rapp BE (2018) Adv Mater 30:1707100Google Scholar
  87. 87.
    Kotz F, Risch P, Arnold K, Sevim S, Puigmartí-Luis J, Quick A, Thiel M, Hrynevich A, Dalton PD, Helmer D, Rapp BE (2019) Nat Commun 10:1439Google Scholar
  88. 88.
    Toepke MW, Beebe DJ (2006) Lab Chip 6:1484Google Scholar
  89. 89.
    Bhagat AAS, Jothimuthu P, Papautsky I (2007) Lab Chip 7:1192Google Scholar
  90. 90.
    Choi KM, Rogers JA (2003) J Am Chem Soc 125:4060Google Scholar
  91. 91.
    Desai SP, Taff BM, Voldman J (2008) Langmuir 24:575Google Scholar
  92. 92.
    Bhattacharjee N, Parra-Cabrera C, Kim YT, Kuo AP, Folch A (2018) Adv Mater 30:1800001Google Scholar
  93. 93.
    Helmer D, Voigt A, Wagner S, Keller N, Sachsenheimer K, Kotz F, Nargang TM, Rapp BE (2017) Sci Rep 7:7387Google Scholar
  94. 94.
    Perry H, Greiner C, Georgakoudi I, Cronin-Golomb M, Omenetto FG (2007) Rev Sci Instrum 78:044302Google Scholar
  95. 95.
    Coenjarts CA, Ober CK (2004) Chem Mater 16:5556Google Scholar
  96. 96.
    Rekštytė S, Malinauskas M, Juodkazis S (2013) Opt Exp 21:17028Google Scholar
  97. 97.
    Becker H (2010) Lab Chip 10:271Google Scholar
  98. 98.
    Kotz F, Arnold K, Wagner S, Bauer W, Keller N, Nargang TM, Helmer D, Rapp BE (2018) Adv Eng Mater 20:1700699Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK)University FreiburgFreiburgGermany
  2. 2.Freiburg Materials Research Center (FMF), University FreiburgFreiburgGermany
  3. 3.FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, University FreiburgFreiburgGermany

Personalised recommendations