Advertisement

Industrial Challenges of Recombinant Proteins

  • Scott R. RudgeEmail author
  • Michael R. LadischEmail author
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 171)

Abstract

The use of recombinant DNA methods to produce large quantities of protein for therapeutic uses has revolutionized medicine. Industrial challenges for manufacture of biotherapeutic proteins are related to the characteristics of these proteins and the increasing quantities required to address needs of patients, worldwide. A brief overview of therapies in which proteins are employed helps to frame some of the challenges facing their industrial production. The number of molecules and their applications have significantly expanded over the last 15–20 years, together with the quantities used to address specific indications. Challenges addressed include achieving cell density, protein expression, separations of cells and protein, protein purification, and segmentation of protein production into smaller quantities with the evolution of personalized medicine and products designed for increasingly small patient populations. This chapter highlights some of the current challenges.

Graphical Abstract

Keywords

Biologics Bioprocessing Cell culture Cell separation Chromatograhpy Expression systems Fermentation Filtration mAbs Recombinant proteins Separations 

Notes

Acknowledgments

The authors wish to acknowledge support from the College of Engineering from “Engineering Faculty Conversation on Future Manufacturing” and Hatch Act Support 10677 and 10646, Purdue University.

References

  1. 1.
    FDA (2019) Quality considerations for continuous manufacturing: guidance for industry. https://www.fda.gov/media/121314/download
  2. 2.
    Quianzon CC, Cheikh I (2012) History of insulin. J Community Hosp Intern Med Perspect 2:18701CrossRefGoogle Scholar
  3. 3.
    Ladisch MR, Kohlmann K (1992) Recombinant human insulin. Biotechnol Prog 8(6):469–478CrossRefGoogle Scholar
  4. 4.
    Ellis LM (2006) Mechanisms of action of bevacizumab as a component of therapy for metastatic colorectal cancer. Semin Oncol 33(5 Suppl 10):S1–S7CrossRefGoogle Scholar
  5. 5.
    Riechmann L, Clark M, Waldman H, Winter G (1988) Reshaping human antibodies for therapy. Nature 332:323–327CrossRefGoogle Scholar
  6. 6.
    Thayer AM (1998) Great expectations. Chem Eng News 76:19CrossRefGoogle Scholar
  7. 7.
    Rader RA (2012) Top 50 (or so) biopharma products. Contract PharmaGoogle Scholar
  8. 8.
    Kaplon H, Reichert JM (2019) Antibodies to watch in 2019. MAbs 11(2):219–238CrossRefGoogle Scholar
  9. 9.
    Doig AR, Ecker DM, Ransohoff TC (2015) Monoclonal antibody targets and indications. Am Pharm Rev 15:177490Google Scholar
  10. 10.
    Kelly B (2009) Industrialization of mAb production technology. MAbs 1(5):443–452CrossRefGoogle Scholar
  11. 11.
    Johansson HJ, Cardillo D, Gerwe B (2017) Are all protein a resins the same? BioProcess Int 15(11):1–5. https://bioprocessintl.com/sponsored-content/protein-resins-performance-comparison-eight-different-protein-resins/ Google Scholar
  12. 12.
    Wilkinson GW, Akrigg A (1992) Constitutive and enhanced expression from the CMV major IE promoter in a defective adenovirus vector. Nucleic Acids Res 20(9):2233–2239CrossRefGoogle Scholar
  13. 13.
    Studier FW (2018) T7 expression systems for inducible production of proteins from cloned genes in E. coli. Curr Protoc Mol Biol 124(1):e63CrossRefGoogle Scholar
  14. 14.
    Fenton D, Lai PH, Lu H, Mann M, Tsai L (1997) Control of norleucine incorporation into recombinant proteins. US Patent 5,599,690Google Scholar
  15. 15.
    Rudge SR (2017) Single-use systems for biotechnology products. Eur Pharm Rev 22(2):64–66Google Scholar
  16. 16.
    Sinclair A, Leveen L, Monge M, Lim J, Cox S (2008) The environmental impact of disposable technologies. BioPharm Int Guide 11:1–11Google Scholar
  17. 17.
    Nims R, Plavsic M (2012) Circovirus inactivation: a literature review. Bioprocess J 11(1):4–10CrossRefGoogle Scholar
  18. 18.
    Shevitz J (2003) Fluid filtration system. US Patent 6,544,424Google Scholar
  19. 19.
    Freeman CA, Samuel PSD, Kompala DS (2017) Compact cell settlers for perfusion cultures of microbial (and mammalian) cells. Biotechnol Prog 33(4):913–922CrossRefGoogle Scholar
  20. 20.
    Kompala DS (2017) Particle settling devices. US patent application US 2017/0333815A1Google Scholar
  21. 21.
    Shirgaonkar IZ, Lanthier S, Kamen A (2004) Acoustic cell filter: a proven cell retention technology for perfusion of animal cell cultures. Biotechnol Adv 22(6):433–444CrossRefGoogle Scholar
  22. 22.
    Lee S (2017) Modernizing the way drugs are made: a transition to continuous manufacturing. https://www.fda.gov/drugs/news-events-human-drugs/modernizing-way-drugs-are-made-transition-continuous-manufacturing
  23. 23.
    NASEM (2019) Continuous manufacturing workshop. National Academies of Sciences, Engineering, and Medicine, WashingtonGoogle Scholar
  24. 24.
    Harrison RG, Todd P, Rudge SR, Petrides DP (2015) Bioseparations science and engineering.2nd edn. Oxford University Press, New YorkGoogle Scholar
  25. 25.
    Van den Pol LA (1998) Sparging-shear sensitivity of animal cells. Thesis Landbouwuniversiteit WageningenGoogle Scholar
  26. 26.
    9th annual report and survey of biopharmaceutical manufacturing capacity and production: a survey of biotherapeutic developers and contract manufacturing organizations, BioPlan Associates, Inc., Rockville, 2012. www.bioplanassociates.com
  27. 27.
    Ladisch MR (2001) Bioseparations engineering: principles, practice, and economics. Wiley, New York, 735 ppGoogle Scholar
  28. 28.
    Wankat P (1986) Large scale adsorption and chromatography, volume. CRC Press, Boca Raton, p 1Google Scholar
  29. 29.
    Gibbs SJ, Lightfoot EN (1986) Scaling up gradient elution chromatography. Ind Eng Chem Fundam 25(4):490–498CrossRefGoogle Scholar
  30. 30.
    Velayudhan A, Ladisch MR (1992) Effect of modulator sorption in gradient elution chromatography: gradient deformation. Chem Eng Sci 47(1):233–239CrossRefGoogle Scholar
  31. 31.
    Peskin AP, Rudge SR (1992) Optimization of large-scale chromatography for biotechnological applications. Appl Biochem Biotechnol 34/45:49CrossRefGoogle Scholar
  32. 32.
    Regnier FE (1991) Perfusion chromatography. Nature 350:634–635CrossRefGoogle Scholar
  33. 33.
    Ding H, Yang M-C, Schisla D, Cussler EL (1989) Hollow-fiber liquid chromatography. AICHE J 35(5):814–820CrossRefGoogle Scholar
  34. 34.
    Arunkumar A, Etzel MR (2018) Fractionation of glycomacropeptide from whey using positively charged ultrafiltration membranes. Foods 7(10):166CrossRefGoogle Scholar
  35. 35.
    Ladisch MR, Zhang L (2016) Fiber-based monolithic columns for liquid chromatography. Anal Bioanal Chem 408(25):6871–6883CrossRefGoogle Scholar
  36. 36.
    Yang Y, Velayudhan A, Ladisch CM, Ladisch MR (1993) Liquid chromatography using cellulosic continuous stationary phases. In: Tsao GT (ed) Chromatography: advances in biochemical engineering/biotechnology, vol 49. Springer, HeidelbergCrossRefGoogle Scholar
  37. 37.
    FDA. https://www.fda.gov/media/105605/download. Accessed 31 July 2019

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.RMC Pharmaceutical Solutions, Inc.LongmontUSA
  2. 2.Purdue University Laboratory of Renewable Resource EngineeringWest LafayetteUSA

Personalised recommendations