pp 1-43 | Cite as

Engineering of Yeast Glycoprotein Expression

  • Charlot De Wachter
  • Linde Van Landuyt
  • Nico CallewaertEmail author
Part of the Advances in Biochemical Engineering/Biotechnology book series


Yeasts are valuable hosts for recombinant protein production, as these unicellular eukaryotes are easy to handle, grow rapidly to a high cell density on cost-effective defined media, often offer a high space–time yield, and are able to perform posttranslational modifications. However, a key difference between yeasts and mammalian cells involves the type of glycosylation structures, which hampers the use of yeasts for the production of many biopharmaceuticals. Glycosylation is not only important for the folding process of most recombinant proteins; it has a large impact on pharmacokinetics and pharmacodynamics of the therapeutic proteins as well. Yeasts’ hypermannosylated glycosyl structures in some cases can evoke immune responses and lead to rapid clearance of the therapeutic protein from the blood. This chapter highlights the efforts made so far regarding the glyco-engineering of N- and O-type glycosylation, removing or reducing yeast-specific glycans. In some cases, this is combined with the introduction of humanized glycosylation pathways. After many years of patient development to overcome remaining challenges, these efforts have now culminated in effective solutions that should allow yeasts to reclaim the primary position in biopharmaceutical manufacturing that they enjoyed in the early days of biotechnology.

Graphical Abstract


Fungi N-glycosylation engineering O-glycosylation engineering Pichia pastoris Recombinant protein expression Saccharomyces cerevisiae Yeast 



Antibody-dependent cell-mediated cytotoxicity


Asparagine-linked glycosylation


Alcohol oxidase 1/2




A. thaliana GDP-4-keto-6-deoxy-mannose-3,5-epimerase




Complement-dependent cytotoxicity


Chinese hamster ovary


Cation independent-mannose-6-phosphate receptor




Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9


ER degradation-enhanced α-1,2-mannosidase protein

Endo H/T

ENGase H/T






ER-associated degradation


Enzyme replacement therapy


Human β-1,3-N-acetylglucosaminyltransferase


Acid glucosidase α














Glucosidase I/II


Granulocyte-macrophage colony stimulating factor


N-acetylglucosaminyltransferase I/II/III/IV


Hepatitis B virus


Human epidermal growth factor receptor 2


Human O-fucosyltransferase-1


Human papillomavirus


Homologous recombination


Lipid-linked oligosaccharide


Monoclonal antibodies




Mannosidase I/II



M-Pol I

Mannan-polymerase complex


Nonhomologous end joining


Open reading frame


Oligosaccharyltransferase complex






Protein-O-linked mannose β-1,2-N-acetylglucosaminyltransferase-I


Protozoan single-subunit oligosaccharyltransferase








Recombinant human erythropoietin




Short guide RNA







C. De Wachter holds a strategic basic research fellowship of the Flanders Institute for Innovation by Science and Technology (IWT). L. Van Landuyt holds a strategic basic research fellowship of the Flanders Fund for Scientific Research (FWO-Vlaanderen, Application 1S54817N). This work was funded in part by an ERC consolidator grant (“GlycoTarget”, 616966), GOA Project 01G01412 (Ghent University), and BOF17-GOA-018, as well as by Grant G041417N of FWO-Vlaanderen.


  1. 1.
    Mattanovich D, Branduardi P, Dato L, Gasser B, Sauer M, Porro D (2012) Recombinant protein production in yeasts. Methods Mol Biol 824:329–358Google Scholar
  2. 2.
    Dean N (1999) Asparagine-linked glycosylation in the yeast Golgi. Biochim Biophys Acta 1426:309–322Google Scholar
  3. 3.
    Han Y, Kanbe T, Cherniak R, Cutler JE (1997) Biochemical characterization of Candida albicans epitopes that can elicit protective and nonprotective antibodies. Infect Immun 65:4100–4107Google Scholar
  4. 4.
    Goetze AM, Liu YD, Zhang Z, Shah B, Lee E, Bondarenko PV, Flynn GC (2011) High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology 21:949–959Google Scholar
  5. 5.
    Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274:546, 563–546, 567Google Scholar
  6. 6.
    Fickers P, Benetti P-H, Waché Y, Marty A, Mauersberger S, Smit MS, Nicaud J-M (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–543Google Scholar
  7. 7.
    De Schutter K, Lin Y-C, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouzé P, Van de Peer Y, Callewaert N (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 27:561–566Google Scholar
  8. 8.
    Mellitzer A, Ruth C, Gustafsson C, Welch M, Birner-Grünberger R, Weis R, Purkarthofer T, Glieder A (2014) Synergistic modular promoter and gene optimization to push cellulase secretion by Pichia pastoris beyond existing benchmarks. J Biotechnol 191:187–195Google Scholar
  9. 9.
    Ruth C, Zuellig T, Mellitzer A, Weis R, Looser V, Kovar K, Glieder A (2010) Variable production windows for porcine trypsinogen employing synthetic inducible promoter variants in Pichia pastoris. Syst Synth Biol 4:181–191Google Scholar
  10. 10.
    Crabtree HG (1929) Observations on the carbohydrate metabolism of tumours. Biochem J 23:536–545Google Scholar
  11. 11.
    Cereghino GPL, Cereghino JL, Ilgen C, Cregg JM (2002) Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol 13:329–332Google Scholar
  12. 12.
    Hirose M, Kameyama S, Ohi H (2002) Characterization of N-linked oligosaccharides attached to recombinant human antithrombin expressed in the yeast Pichia pastoris. Yeast 19:1191–1202Google Scholar
  13. 13.
    Vinogradov E, Petersen BO, Duus JO (2000) Isolation and characterization of non-labeled and 13C-labeled mannans from Pichia pastoris yeast. Carbohydr Res 325:216–221Google Scholar
  14. 14.
    Madeira-Lopes A, Cabeça-Silva C (1984) The dependence on temperature of thermal death, growth and yield of Candida tropicalis. Z Allg Mikrobiol 24:133–135Google Scholar
  15. 15.
    Ishchuk OP, Voronovsky AY, Abbas CA, Sibirny AA (2009) Construction of Hansenula polymorpha strains with improved thermotolerance. Biotechnol Bioeng 104:911–919Google Scholar
  16. 16.
    Alessandri L, Ouellette D, Acquah A, Rieser M, Leblond D, Saltarelli M, Radziejewski C, Fujimori T, Correia I (2012) Increased serum clearance of oligomannose species present on a human IgG1 molecule. MAbs 4:509–520Google Scholar
  17. 17.
    Liu L, Gomathinayagam S, Hamuro L, Prueksaritanont T, Wang W, Stadheim TA, Hamilton SR (2013) The impact of glycosylation on the pharmacokinetics of a TNFR2:Fc fusion protein expressed in glycoengineered Pichia Pastoris. Pharm Res 30:803–812Google Scholar
  18. 18.
    Kompella U, Lee V (1991) Pharmacokinetics of peptide and protein drugs. In: Lee VH (ed) Peptide and protein drug delivery. Marcel Dekker, New York, pp 391–484Google Scholar
  19. 19.
    Sinclair AM, Elliott S (2005) Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 94:1626–1635Google Scholar
  20. 20.
    Carter CRD, Whitmore KM, Thorpe R (2004) The significance of carbohydrates on G-CSF: differential sensitivity of G-CSFs to human neutrophil elastase degradation. J Leukoc Biol 75:515–522Google Scholar
  21. 21.
    Nissen C (1994) Glycosylation of recombinant human granulocyte colony stimulating factor: implications for stability and potency. Eur J Cancer 30A(Suppl 3):S12–S14Google Scholar
  22. 22.
    Solá RJ, Griebenow K (2009) Effects of glycosylation on the stability of protein pharmaceuticals. J Pharm Sci 98:1223–1245Google Scholar
  23. 23.
    Raju TS, Scallon B (2007) Fc glycans terminated with N-acetylglucosamine residues increase antibody resistance to papain. Biotechnol Prog 23:964–971Google Scholar
  24. 24.
    Hammond C, Helenius A (1994) Folding of VSV G protein: sequential interaction with BiP and calnexin. Science 266:456–458Google Scholar
  25. 25.
    Xie W, Kanehara K, Sayeed A, Ng DTW (2009) Intrinsic conformational determinants signal protein misfolding to the Hrd1/Htm1 endoplasmic reticulum-associated degradation system. Mol Biol Cell 20:3317–3329Google Scholar
  26. 26.
    Hang I, Lin C, Grant OC, Fleurkens S, Villiger TK, Soos M, Morbidelli M, Woods RJ, Gauss R, Aebi M (2015) Analysis of site-specific N-glycan remodeling in the endoplasmic reticulum and the Golgi. Glycobiology 25:1335–1349Google Scholar
  27. 27.
    Perlińska-Lenart U, Bańkowska R, Palamarczyk G, Kruszewska JS (2006) Overexpression of the Saccharomyces cerevisiae RER2 gene in Trichoderma reesei affects dolichol dependent enzymes and protein glycosylation. Fungal Genet Biol 43:422–429Google Scholar
  28. 28.
    Parsaie Nasab F, Aebi M, Bernhard G, Frey AD (2013) A combined system for engineering glycosylation efficiency and glycan structure in Saccharomyces cerevisiae. Appl Environ Microbiol 79:997–1007Google Scholar
  29. 29.
    Choi B-K, Warburton S, Lin H, Patel R, Boldogh I, Meehl M, Meehl M, d’Anjou M, Pon L, Stadheim TA, Sethuraman N (2012) Improvement of N-glycan site occupancy of therapeutic glycoproteins produced in Pichia pastoris. Appl Microbiol Biotechnol 95:671–682Google Scholar
  30. 30.
    Kasturi L, Chen H, Shakin-Eshleman SH (1997) Regulation of N-linked core glycosylation: use of a site-directed mutagenesis approach to identify Asn-Xaa-Ser/Thr sequons that are poor oligosaccharide acceptors. Biochem J 323(Pt 2):415–419Google Scholar
  31. 31.
    Nakayama K, Nagasu T, Shimma Y, Kuromitsu J, Jigami Y (1992) OCH1 encodes a novel membrane bound mannosyltransferase: outer chain elongation of asparagine-linked oligosaccharides. EMBO J 11:2511–2519Google Scholar
  32. 32.
    Nakanishi-Shindo Y, Nakayama K, Tanaka A, Toda Y, Jigami Y (1993) Structure of the N-linked oligosaccharides that show the complete loss of alpha-1,6-polymannose outer chain from och1, och1 mnn1, and och1 mnn1 alg3 mutants of Saccharomyces cerevisiae. J Biol Chem 268:26338–26345Google Scholar
  33. 33.
    Chiba Y, Suzuki M, Yoshida S, Yoshida A, Ikenaga H, Takeuchi M, Jigami Y, Ichishima E (1998) Production of human compatible high mannose-type (Man5GlcNAc2) sugar chains in Saccharomyces cerevisiae. J Biol Chem 273:26298–26304Google Scholar
  34. 34.
    Abe H, Takaoka Y, Chiba Y, Sato N, Ohgiya S, Itadani A, Hirashima M, Shimoda C, Jigami Y, Nakayama K (2009) Development of valuable yeast strains using a novel mutagenesis technique for the effective production of therapeutic glycoproteins. Glycobiology 19:428–436Google Scholar
  35. 35.
    Tang H, Wang S, Wang J, Song M, Xu M, Zhang M, Shen Y, Hou J, Bao X (2016) N-hypermannose glycosylation disruption enhances recombinant protein production by regulating secretory pathway and cell wall integrity in Saccharomyces cerevisiae. Sci Rep 6:25654Google Scholar
  36. 36.
    Bartkevičiūtė D, Sasnauskas K (2004) Disruption of the MNN10 gene enhances protein secretion in Kluyveromyces lactis and Saccharomyces cerevisiae. FEMS Yeast Res 4:833–840Google Scholar
  37. 37.
    Wang T-Y, Huang C-J, Chen H-L, Ho P-C, Ke H-M, Cho H-Y, Ruan S-K, Hung K-Y, Wang I-L, Cai Y-W, Sung H-M, Li W-H, Shih M-C (2013) Systematic screening of glycosylation- and trafficking-associated gene knockouts in Saccharomyces cerevisiaeidentifies mutants with improved heterologous exocellulase activity and host secretion. BMC Biotechnol 13:71Google Scholar
  38. 38.
    De Pourcq K, Vervecken W, Dewerte I, Valevska A, Van Hecke A, Callewaert N (2012) Engineering the yeast Yarrowia lipolytica for the production of therapeutic proteins homogeneously glycosylated with Man8GlcNAc2 and Man5GlcNAc2. Microb Cell Fact 11:53Google Scholar
  39. 39.
    Choi B-K, Bobrowicz P, Davidson RC, Hamilton SR, Kung DH, Li H, Miele RG, Nett JH, Wildt S, Gerngross TU (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci U S A 100:5022–5027Google Scholar
  40. 40.
    Vervecken W, Kaigorodov V, Callewaert N, Geysens S, De Vusser K, Contreras R (2004) In vivo synthesis of mammalian-like, hybrid-type N-glycans in Pichia pastoris. Appl Environ Microbiol 70:2639–2646Google Scholar
  41. 41.
    Gehlsen K, Chappell T (2014) Pichia pastoris strains for producing predominantly homogeneous glycan structure. WO/2014/066479Google Scholar
  42. 42.
    Krainer FW, Gmeiner C, Neutsch L, Windwarder M, Pletzenauer R, Herwig C, Altmann F, Glieder A, Spadiut O (2013) Knockout of an endogenous mannosyltransferase increases the homogeneity of glycoproteins produced in Pichia pastoris. Sci Rep 3:3279Google Scholar
  43. 43.
    Jiang B, Argyros R, Bukowski J, Nelson S, Sharkey N, Kim S, Copeland V, Davidson RC, Chen R, Zhuang J, Sethuraman N, Stadheim TA (2015) Inactivation of a GAL4-like transcription factor improves cell fitness and product yield in glycoengineered Pichia pastoris strains. Appl Environ Microbiol 81:260–271Google Scholar
  44. 44.
    Jiang B, Argyros R, Nelson S, Davidson R, Chen R, Zhuang J (2013) Engineered lower eukaryotic host strains for recombinant protein expression. WO/2013/062940Google Scholar
  45. 45.
    Weinhandl K, Ballach M, Winkler M, Ahmad M, Glieder A, Birner-Gruenberger R, Fotheringham I, Escalettes F, Camattari A (2016) Pichia pastoris mutants as host strains for efficient secretion of recombinant branched chain aminotransferase (BCAT). J Biotechnol 235:84–91Google Scholar
  46. 46.
    Callewaert N, Laroy W, Cadirgi H, Geysens S, Saelens X, Min Jou W, Contreras R (2001) Use of HDEL-tagged Trichoderma reesei mannosyl oligosaccharide 1,2-alpha-D-mannosidase for N-glycan engineering in Pichia pastoris. FEBS Lett 503:173–178Google Scholar
  47. 47.
    Hamilton SR, Bobrowicz P, Bobrowicz B, Davidson RC, Li H, Mitchell T, Nett JH, Rausch S, Stadheim TA, Wischnewski H, Wildt S, Gerngross TU (2003) Production of complex human glycoproteins in yeast. Science 301:1244–1246Google Scholar
  48. 48.
    Laukens B, De Wachter C, Callewaert N (2015) Engineering the Pichia pastoris N-glycosylation pathway using the GlycoSwitch technology. Methods Mol Biol 1321:103–122Google Scholar
  49. 49.
    Roy SK, Yoko-o T, Ikenaga H, Jigami Y (1998) Functional evidence for UDP-galactose transporter in Saccharomyces cerevisiae through the in vivo galactosylation and in vitro transport assay. J Biol Chem 273:2583–2590Google Scholar
  50. 50.
    Bobrowicz P, Davidson RC, Li H, Potgieter TI, Nett JH, Hamilton SR, Stadheim TA, Miele RG, Bobrowicz B, Mitchell T, Rausch S, Renfer E, Wildt S (2004) Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose. Glycobiology 14:757–766Google Scholar
  51. 51.
    Lodish HF (1991) Recognition of complex oligosaccharides by the multi-subunit asialoglycoprotein receptor. Trends Biochem Sci 16:374–377Google Scholar
  52. 52.
    Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim TA, Li H, Choi B-K, Hopkins D, Wischnewski H, Roser J, Mitchell T, Strawbridge RR, Hoopes J, Wildt S, Gerngross TU (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313:1441–1443Google Scholar
  53. 53.
    Nett JH, Gomathinayagam S, Hamilton SR, Gong B, Davidson RC, Du M, Hopkins D, Mitchell T, Mallem MR, Nylen A, Shaikh SS, Sharkey N, Barnard GC, Copeland V, Liu L, Evers R, Li Y, Gray PM, Lingham RB, Visco D, Forrest G, DeMartino J, Linden T, Potgieter TI, Wildt S, Stadheim TA, d’Anjou M, Li H, Sethuraman N (2012) Optimization of erythropoietin production with controlled glycosylation-PEGylated erythropoietin produced in glycoengineered Pichia pastoris. J Biotechnol 157:198–206Google Scholar
  54. 54.
    Jacobs PP, Geysens S, Vervecken W, Contreras R, Callewaert N (2009) Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology. Nat Protoc 4:58–70Google Scholar
  55. 55.
    Bobrowicz P, Hamilton S, Gerngross T, Wildt S, Choi B-K, Nett J, Davidson R (2004) Production of modified glycoproteins having multiple antennary structures. WO/2004/074461Google Scholar
  56. 56.
    Breitling J, Aebi M (2013) N-linked protein glycosylation in the endoplasmic reticulum. Cold Spring Harb Perspect Biol 5:a013359Google Scholar
  57. 57.
    Sharma CB, Knauer R, Lehle L (2001) Biosynthesis of lipid-linked oligosaccharides in yeast: the ALG3 gene encodes the Dol-P-Man:Man5GlcNAc2-PP-Dol mannosyltransferase. Biol Chem 382:321–328Google Scholar
  58. 58.
    Aebi M, Gassenhuber J, Domdey H, te Heesen S (1996) Cloning and characterization of the ALG3 gene of Saccharomyces cerevisiae. Glycobiology 6:439–444Google Scholar
  59. 59.
    Davidson RC, Nett JH, Renfer E, Li H, Stadheim TA, Miller BJ, Miele RG, Hamilton SR, Choi B-K, Mitchell TI, Wildt S (2004) Functional analysis of the ALG3 gene encoding the Dol-P-Man: Man5GlcNAc2-PP-Dol mannosyltransferase enzyme of P. pastoris. Glycobiology 14:399–407Google Scholar
  60. 60.
    Li H, Sethuraman N, Stadheim TA, Zha D, Prinz B, Ballew N, Bobrowicz P, Choi B-K, Cook WJ, Cukan M, Houston-Cummings NR, Davidson R, Gong B, Hamilton SR, Hoopes JP, Jiang Y, Kim N, Mansfield R, Nett JH, Rios S, Strawbridge R, Wildt S, Gerngross TU (2006) Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol 24:210–215Google Scholar
  61. 61.
    Helenius J, Ng DTW, Marolda CL, Walter P, Valvano MA, Aebi M (2002) Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein. Nature 415:447–450Google Scholar
  62. 62.
    Song H, Qian W, Wang H, Qiu B (2010) Identification and functional characterization of the HpALG11 and the HpRFT1 genes involved in N-linked glycosylation in the methylotrophic yeast Hansenula polymorpha. Glycobiology 20:1665–1674Google Scholar
  63. 63.
    De Pourcq K, Tiels P, Van Hecke A, Geysens S, Vervecken W, Callewaert N (2012) Engineering Yarrowia lipolytica to produce glycoproteins homogeneously modified with the universal Man3GlcNAc2 N-glycan core. PLoS One 7:e39976Google Scholar
  64. 64.
    Piirainen MA, Boer H, de Ruijter JC, Frey AD (2016) A dual approach for improving homogeneity of a human-type N-glycan structure in Saccharomyces cerevisiae. Glycoconj J 33:189–199Google Scholar
  65. 65.
    Qian W, Song H, Liu Y, Zhang C, Niu Z, Wang H, Qiu B (2009) Improved gene disruption method and Cre-loxP mutant system for multiple gene disruptions in Hansenula polymorpha. J Microbiol Methods 79:253–259Google Scholar
  66. 66.
    Wang H, Song H-L, Wang Q, Qiu B-S (2013) Expression of glycoproteins bearing complex human-like glycans with galactose terminal in Hansenula polymorpha. World J Microbiol Biotechnol 29:447–458Google Scholar
  67. 67.
    Cheng J, Huang S, Yu H, Li Y, Lau K, Chen X (2010) Trans-sialidase activity of Photobacterium damsela alpha2,6-sialyltransferase and its application in the synthesis of sialosides. Glycobiology 20:260–268Google Scholar
  68. 68.
    Moon H-Y, Cheon SA, Kim H, Agaphonov MO, Kwon O, Oh D-B, Kim J-Y, Kang HA (2015) Hansenula polymorpha Hac1p is critical to protein N-glycosylation activity modulation, as revealed by functional and transcriptomic analyses. Appl Environ Microbiol 81:6982–6993Google Scholar
  69. 69.
    Guerfal M, Ryckaert S, Jacobs PP, Ameloot P, Van Craenenbroeck K, Derycke R, Callewaert N (2010) The HAC1 gene from Pichia pastoris: characterization and effect of its overexpression on the production of secreted, surface displayed and membrane proteins. Microb Cell Fact 9:49Google Scholar
  70. 70.
    Valkonen M, Penttilä M, Saloheimo M (2003) Effects of inactivation and constitutive expression of the unfolded- protein response pathway on protein production in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 69:2065–2072Google Scholar
  71. 71.
    Wang F, Wang X, Yu X, Fu L, Liu Y, Ma L, Zhai C (2015) High-level expression of endo-β-N-acetylglucosaminidase H from Streptomyces plicatus in Pichia pastoris and its application for the deglycosylation of glycoproteins. PLoS One 10:e0120458Google Scholar
  72. 72.
    Stals I, Samyn B, Sergeant K, White T, Hoorelbeke K, Coorevits A, Devreese B, Claeyssens M, Piens K (2010) Identification of a gene coding for a deglycosylating enzyme in Hypocrea jecorina. FEMS Microbiol Lett 303:9–17Google Scholar
  73. 73.
    Shibata N, Ichikawa T, Tojo M, Takahashi M, Ito N, Okubo Y, Suzuki S (1985) Immunochemical study on the mannans of Candida albicans NIH A-207, NIH B-792, and J-1012 strains prepared by fractional precipitation with cetyltrimethylammonium bromide. Arch Biochem Biophys 243:338–348Google Scholar
  74. 74.
    Gomathinayagam S, Mitchell T, Zartler ER, Heiss C, Azadi P, Zha D, Houston-Cummings NR, Jiang Y, Li F, Giaccone E, Porambo RJ, Anderson CL, Sethuraman N, Li H, Stadheim TA (2011) Structural elucidation of an alpha 1,2 mannosidase resistant oligosaccharide produced in Pichia pastoris. Glycobiology 21:1606–1615Google Scholar
  75. 75.
    Ueno K, Okawara A, Yamagoe S, Naka T, Umeyama T, Utena-Abe Y, Tarumoto N, Niimi M, Ohno H, Doe M, Fujiwara N, Kinjo Y, Miyazaki Y (2013) The mannan of Candida albicans lacking β-1,2-linked oligomannosides increases the production of inflammatory cytokines by dendritic cells. Med Mycol 51:385–395Google Scholar
  76. 76.
    Miyakawa Y, Kuribayashi T, Kagaya K, Suzuki M, Nakase T, Fukazawa Y (1992) Role of specific determinants in mannan of Candida albicans serotype A in adherence to human buccal epithelial cells. Infect Immun 60:2493–2499Google Scholar
  77. 77.
    Masuoka J (2004) Surface glycans of Candida albicans and other pathogenic fungi: physiological roles, clinical uses, and experimental challenges. Clin Microbiol Rev 17:281–310Google Scholar
  78. 78.
    Singleton DR, Masuoka J, Hazen KC (2005) Surface hydrophobicity changes of two Candida albicans serotype B mnn4delta mutants. Eukaryot Cell 4:639–648Google Scholar
  79. 79.
    Mille C, Bobrowicz P, Trinel P-A, Li H, Maes E, Guerardel Y, Fradin C, Martínez-Esparza M, Davidson RC, Janbon G, Poulain D, Wildt S (2008) Identification of a new family of genes involved in β-1,2-mannosylation of glycans in Pichia pastoris and Candida albicans. J Biol Chem 283:9724–9736Google Scholar
  80. 80.
    Hopkins D, Gomathinayagam S, Rittenhour AM, Du M, Hoyt E, Karaveg K, Mitchell T, Nett JH, Sharkey NJ, Stadheim TA, Li H, Hamilton SR (2011) Elimination of β-mannose glycan structures in Pichia pastoris. Glycobiology 21:1616–1626Google Scholar
  81. 81.
    Behrens NH, Leloir LF (1970) Dolichol monophosphate glucose: an intermediate in glucose transfer in liver. Proc Natl Acad Sci U S A 66:153–159Google Scholar
  82. 82.
    Orlean P, Albright C, Robbins PW (1988) Cloning and sequencing of the yeast gene for dolichol phosphate mannose synthase, an essential protein. J Biol Chem 263:17499–17507Google Scholar
  83. 83.
    Sharma CB, Babczinski P, Lehle L, Tanner W (1974) The role of dolicholmonophosphate in glycoprotein biosynthesis in Saccharomyces cerevisiae. Eur J Biochem 46:35–41Google Scholar
  84. 84.
    Tanner W (1969) A lipid intermediate in mannan biosynthesis in yeast. Biochem Biophys Res Commun 35:144–150Google Scholar
  85. 85.
    Tanner W, Jung P, Behrens NH (1971) Dolicholmonophosphates: mannosyl acceptors in a particulate in vitro system of S. cerevisiae. FEBS Lett 16:245–248Google Scholar
  86. 86.
    Lussier M, Sdicu AM, Bussey H (1999) The KTR and MNN1 mannosyltransferase families of Saccharomyces cerevisiae. Biochim Biophys Acta 1426:323–334Google Scholar
  87. 87.
    Graham TR, Seeger M, Payne GS, MacKay VL, Emr SD (1994) Clathrin-dependent localization of alpha 1,3 mannosyltransferase to the Golgi complex of Saccharomyces cerevisiae. J Cell Biol 127:667–678Google Scholar
  88. 88.
    Romero PA, Lussier M, Veronneau S, Sdicu A-M, Herscovics A, Bussey H (1999) Mnt2p and Mnt3p of Saccharomyces cerevisiae are members of the Mnn1p family of α-1,3-mannosyltransferases responsible for adding the terminal mannose residues of O-linked oligosaccharides. Glycobiology 9:1045–1051Google Scholar
  89. 89.
    Jigami Y, Odani T (1999) Mannosylphosphate transfer to yeast mannan. Biochim Biophys Acta 1426:335–345Google Scholar
  90. 90.
    Trimble RB, Lubowski C, Hauer CR, Stack R, McNaughton L, Gemmill TR, Kumar SA (2004) Characterization of N- and O-linked glycosylation of recombinant human bile salt-stimulated lipase secreted by Pichia pastoris. Glycobiology 14:265–274Google Scholar
  91. 91.
    Goto M (2007) Protein O-glycosylation in fungi: diverse structures and multiple functions. Biosci Biotechnol Biochem 71:1415–1427Google Scholar
  92. 92.
    Lommel M, Strahl S (2009) Protein O-mannosylation: conserved from bacteria to humans. Glycobiology 19:816–828Google Scholar
  93. 93.
    Bause E, Lehle L (1979) Enzymatic N-glycosylation and O-glycosylation of synthetic peptide acceptors by dolichol-linked sugar derivatives in yeast. Eur J Biochem 101:531–540Google Scholar
  94. 94.
    Larriba G, Elorza MV, Villanueva JR, Sentandreu R (1976) Participation of dolichol phospho-mannose in the glycosylation of yeast wall manno-proteins at the polysomal level. FEBS Lett 71:316–320Google Scholar
  95. 95.
    Strahl-Bolsinger S, Immervoll T, Deutzmann R, Tanner W (1993) PMT1, the gene for a key enzyme of protein O-glycosylation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 90:8164–8168Google Scholar
  96. 96.
    Strahl-Bolsinger S, Tanner W (1991) Protein O-glycosylation in Saccharomyces cerevisiae. Purification and characterization of the dolichyl-phosphate-D-mannose-protein O-D-mannosyltransferase. Eur J Biochem 196:185–190Google Scholar
  97. 97.
    Gentzsch M, Strahl-Bolsinger S, Tanner W (1995) A new Dol-P-Man:protein O-D-mannosyltransferase activity from Saccharomyces cerevisiae. Glycobiology 5:77–82Google Scholar
  98. 98.
    Gentzsch M, Tanner W (1996) The PMT gene family: protein O-glycosylation in Saccharomyces cerevisiae is vital. EMBO J 15:5752–5759Google Scholar
  99. 99.
    Lussier M, Gentzsch M, Sdicu AM, Bussey H, Tanner W (1995) Protein O-glycosylation in yeast. The PMT2 gene specifies a second protein O-mannosyltransferase that functions in addition to the PMT1-encoded activity. J Biol Chem 270:2770–2775Google Scholar
  100. 100.
    Girrbach V, Zeller T, Priesmeier M, Strahl-Bolsinger S (2000) Structure-function analysis of the dolichyl phosphate-mannose: protein O-mannosyltransferase ScPmt1p. J Biol Chem 275:19288–19296Google Scholar
  101. 101.
    Gentzsch M, Tanner W (1997) Protein-O-glycosylation in yeast: protein-specific mannosyltransferases. Glycobiology 7:481–486Google Scholar
  102. 102.
    Girrbach V, Strahl S (2003) Members of the evolutionarily conserved PMT family of protein O-mannosyltransferases form distinct protein complexes among themselves. J Biol Chem 278:12554–12562Google Scholar
  103. 103.
    Govindappa N, Hanumanthappa M, Venkatarangaiah K, Kanojia K, Venkatesan K, Chatterjee A, Kusumanchi M, Dave N, Hazra P, Tiwari S, Sastry K (2013) PMT1 gene plays a major role in O-mannosylation of insulin precursor in Pichia pastoris. Protein Expr Purif 88:164–171Google Scholar
  104. 104.
    Nett JH, Cook WJ, Chen M-T, Davidson RC, Bobrowicz P, Kett W, Brevnova E, Potgieter TI, Mellon MT, Prinz B, Choi B-K, Zha D, Burnina I, Bukowski JT, Du M, Wildt S, Hamilton SR (2013) Characterization of the Pichia pastoris protein-O-mannosyltransferase gene family. PLoS One 8:e68325Google Scholar
  105. 105.
    Agaphonov MO, Romanova NV, Trushkina PM, Smirnov VN, Ter-Avanesyan MD (2002) Aggregation and retention of human urokinase type plasminogen activator in the yeast endoplasmic reticulum. BMC Mol Biol 3:15Google Scholar
  106. 106.
    Kim H, Moon HY, Lee D-J, Cheon SA, Yoo SJ, Park J-N, Agaphonov MO, Oh D-B, Kwon O, Kang HA (2013) Functional and molecular characterization of novel Hansenula polymorpha genes, HpPMT5 and HpPMT6, encoding protein O-mannosyltransferases. Fungal Genet Biol 58–59:10–24Google Scholar
  107. 107.
    Kim H, Thak EJ, Lee D-J, Agaphonov MO, Kang HA (2015) Hansenula polymorpha Pmt4p plays critical roles in O-mannosylation of surface membrane proteins and participates in heteromeric complex formation. PLoS One 10:e0129914Google Scholar
  108. 108.
    Bhatti RS, Shah S, Suresh KP, Sandhu JS (2013) Recent pharmacological developments on rhodanines and 2,4-thiazolidinediones. Int J Med Chem 2013:793260Google Scholar
  109. 109.
    Orchard MG, Neuss JC, Galley CMS, Carr A, Porter DW, Smith P, Scopes DIC, Haydon D, Vousden K, Stubberfield CR, Young K, Page M (2004) Rhodanine-3-acetic acid derivatives as inhibitors of fungal protein mannosyl transferase 1 (PMT1). Bioorg Med Chem Lett 14:3975–3978Google Scholar
  110. 110.
    Cantero PD, Lengsfeld C, Prill SK-H, Subanović M, Román E, Pla J, Ernst JF (2007) Transcriptional and physiological adaptation to defective protein-O-mannosylation in Candida albicans. Mol Microbiol 64:1115–1128Google Scholar
  111. 111.
    Arroyo J, Hutzler J, Bermejo C, Ragni E, García-Cantalejo J, Botías P, Piberger H, Schott A, Sanz AB, Strahl S (2011) Functional and genomic analyses of blocked protein O-mannosylation in baker’s yeast. Mol Microbiol 79:1529–1546Google Scholar
  112. 112.
    Pastores GM (2010) Recombinant glucocerebrosidase (imiglucerase) as a therapy for Gaucher disease. BioDrugs 24:41–47Google Scholar
  113. 113.
    Tiels P, Baranova E, Piens K, De Visscher C, Pynaert G, Nerinckx W, Stout J, Fudalej F, Hulpiau P, Tännler S, Geysens S, Van Hecke A, Valevska A, Vervecken W, Remaut H, Callewaert N (2012) A bacterial glycosidase enables mannose-6-phosphate modification and improved cellular uptake of yeast-produced recombinant human lysosomal enzymes. Nat Biotechnol 30:1225–1231Google Scholar
  114. 114.
    Hamilton SR, Cook WJ, Gomathinayagam S, Burnina I, Bukowski J, Hopkins D, Schwartz S, Du M, Sharkey NJ, Bobrowicz P, Wildt S, Li H, Stadheim TA, Nett JH (2013) Production of sialylated O-linked glycans in Pichia pastoris. Glycobiology 23:1192–1203Google Scholar
  115. 115.
    Bergwerff AA, Stark W, Fendrich G, Knecht R, Blommers MJJ, Maerki W, Kragten EA, van Oostrum J (1998) Identification of Manα1-3Manα1-2Man and Man-linked phosphate on O-mannosylated recombinant leech-derived tryptase inhibitor produced by Saccharomyces cerevisiae and determination of the solution conformation of the mannosylated polypeptide. Eur J Biochem 253:560–575Google Scholar
  116. 116.
    Bretthauer RK (2007) Characterization of O-linked saccharides on glycoproteins. Methods Mol Biol 389:107–118Google Scholar
  117. 117.
    Gomathinayagam S, Hamilton SR (2014) In vitro enzymatic treatment to remove O-linked mannose from intact glycoproteins. Appl Microbiol Biotechnol 98:2545–2554Google Scholar
  118. 118.
    Ibatullin FM, Golubev AM, Firsov LM, Neustroev KN (1993) A model for cleavage of O-glycosidic bonds in glycoproteins. Glycoconj J 10:214–218Google Scholar
  119. 119.
    Kumar BSG, Pohlentz G, Schulte M, Mormann M, Kumar NS (2014) Jack bean α-mannosidase: amino acid sequencing and N-glycosylation analysis of a valuable glycomics tool. Glycobiology 24:252–261Google Scholar
  120. 120.
    Malm D, Nilssen Ø (2008) Alpha-mannosidosis. Orphanet J Rare Dis 3:21Google Scholar
  121. 121.
    Aronson NN, Kuranda MJ (1989) Lysosomal degradation of Asn-linked glycoproteins. FASEB J 3:2615–2622Google Scholar
  122. 122.
    Hubalek F, Pettersson A, Kjeldsen T, Andersen A (2014) Method for making mature insulin polypeptides. WO/2014/195452Google Scholar
  123. 123.
    Amano K, Chiba Y, Kasahara Y, Kato Y, Kaneko MK, Kuno A, Ito H, Kobayashi K, Hirabayashi J, Jigami Y, Narimatsu H (2008) Engineering of mucin-type human glycoproteins in yeast cells. PNAS 105:3232–3237Google Scholar
  124. 124.
    Steentoft C, Vakhrushev SY, Vester-Christensen MB, Schjoldager KT-BG, Kong Y, Bennett EP, Mandel U, Wandall H, Levery SB, Clausen H (2011) Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines. Nat Methods 8:977–982Google Scholar
  125. 125.
    Chigira Y, Oka T, Okajima T, Jigami Y (2008) Engineering of a mammalian O-glycosylation pathway in the yeast Saccharomyces cerevisiae: production of O-fucosylated epidermal growth factor domains. Glycobiology 18:303–314Google Scholar
  126. 126.
    Kao YH, Lee GF, Wang Y, Starovasnik MA, Kelley RF, Spellman MW, Lerner L (1999) The effect of O-fucosylation on the first EGF-like domain from human blood coagulation factor VII. Biochemistry 38:7097–7110Google Scholar
  127. 127.
    Nakayama K, Maeda Y, Jigami Y (2003) Interaction of GDP-4-keto-6-deoxymannose-3,5-epimerase-4-reductase with GDP-mannose-4,6-dehydratase stabilizes the enzyme activity for formation of GDP-fucose from GDP-mannose. Glycobiology 13:673–680Google Scholar
  128. 128.
    Gusakov AV, Antonov AI, Ustinov BB (2008) N-glycosylation in Chrysosporium lucknowense enzymes. Carbohydr Res 343:48–55Google Scholar
  129. 129.
    Ichishima E, Taya N, Ikeguchi M, Chiba Y, Nakamura M, Kawabata C, Inoue T, Takahashi K, Minetoki T, Ozeki K, Kumagai C, Gomi K, Yoshida T, Nakajima T (1999) Molecular and enzymic properties of recombinant 1, 2-alpha-mannosidase from Aspergillus saitoi overexpressed in Aspergillus oryzae cells. Biochem J 339(Pt 3):589–597Google Scholar
  130. 130.
    Yoshida T, Kato Y, Asada Y, Nakajima T (2000) Filamentous fungus Aspergillus oryzae has two types of alpha-1,2-mannosidases, one of which is a microsomal enzyme that removes a single mannose residue from Man9GlcNAc2. Glycoconj J 17:745–748Google Scholar
  131. 131.
    Maras M, Saelens X, Laroy W, Piens K, Claeyssens M, Fiers W, Contreras R (1997) In vitro conversion of the carbohydrate moiety of fungal glycoproteins to mammalian-type oligosaccharides--evidence for N-acetylglucosaminyltransferase-I-accepting glycans from Trichoderma reesei. Eur J Biochem 249:701–707Google Scholar
  132. 132.
    Kainz E, Gallmetzer A, Hatzl C, Nett JH, Li H, Schinko T, Pachlinger R, Berger H, Reyes-Dominguez Y, Bernreiter A, Gerngross T, Wildt S, Strauss J (2008) N-glycan modification in Aspergillus species. Appl Environ Microbiol 74:1076–1086Google Scholar
  133. 133.
    Ward OP (2012) Production of recombinant proteins by filamentous fungi. Biotechnol Adv 30:1119–1139Google Scholar
  134. 134.
    Zheng K, Bantog C, Bayer R (2011) The impact of glycosylation on monoclonal antibody conformation and stability. MAbs 3:568–576Google Scholar
  135. 135.
    Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, Weikert SHA, Presta LG (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277:26733–26740Google Scholar
  136. 136.
    Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278:3466–3473Google Scholar
  137. 137.
    Jefferis R (2009) Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action. Trends Pharmacol Sci 30:356–362Google Scholar
  138. 138.
    Beck A, Reichert JM (2012) Marketing approval of mogamulizumab: a triumph for glyco-engineering. MAbs 4:419–425Google Scholar
  139. 139.
    Umaña P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17:176–180Google Scholar
  140. 140.
    Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R, Wakitani M, Niwa R, Sakurada M, Uchida K, Shitara K, Satoh M (2004) Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 87:614–622Google Scholar
  141. 141.
    Kanda Y, Imai-Nishiya H, Kuni-Kamochi R, Mori K, Inoue M, Kitajima-Miyama K, Okazaki A, Iida S, Shitara K, Satoh M (2007) Establishment of a GDP-mannose 4,6-dehydratase (GMD) knockout host cell line: a new strategy for generating completely non-fucosylated recombinant therapeutics. J Biotechnol 130:300–310Google Scholar
  142. 142.
    Zhang N, Liu L, Dumitru CD, Cummings NRH, Cukan M, Jiang Y, Li Y, Li F, Mitchell T, Mallem MR, Ou Y, Patel RN, Vo K, Wang H, Burnina I, Choi B-K, Huber H, Stadheim TA, Zha D (2011) Glycoengineered Pichia produced anti-HER2 is comparable to trastuzumab in preclinical study. MAbs 3:289–298Google Scholar
  143. 143.
    Potgieter TI, Cukan M, Drummond JE, Houston-Cummings NR, Jiang Y, Li F, Lynaugh H, Mallem M, McKelvey TW, Mitchell T, Nylen A, Rittenhour A, Stadheim TA, Zha D, d’Anjou M (2009) Production of monoclonal antibodies by glycoengineered Pichia pastoris. J Biotechnol 139:318–325Google Scholar
  144. 144.
    Visser H, Joosten V, Punt PJ, Gusakov AV, Olson PT, Joosten R, Bartels J, Visser J, Sinitsyn AP, Emalfarb MA, Verdoes JC, Wery J (2011) Development of a mature fungal technology and production platform for industrial enzymes based on a Myceliophthora thermophila isolate, previously known as Chrysosporium lucknowense C1. Ind Biotechnol 7:214–223Google Scholar
  145. 145.
    Grabowski GA, Golembo M, Shaaltiel Y (2014) Taliglucerase alfa: an enzyme replacement therapy using plant cell expression technology. Mol Genet Metab 112:1–8Google Scholar
  146. 146.
    Akeboshi H, Kasahara Y, Tsuji D, Itoh K, Sakuraba H, Chiba Y, Jigami Y (2009) Production of human beta-hexosaminidase A with highly phosphorylated N-glycans by the overexpression of the Ogataea minuta MNN4 gene. Glycobiology 19:1002–1009Google Scholar
  147. 147.
    Park J-N, Song Y, Cheon SA, Kwon O, Oh D-B, Jigami Y, Kim J-Y, Kang HA (2011) Essential role of YlMPO1, a novel Yarrowia lipolytica homologue of Saccharomyces cerevisiae MNN4, in mannosylphosphorylation of N- and O-linked glycans. Appl Environ Microbiol 77:1187–1195Google Scholar
  148. 148.
    Chiba Y, Sakuraba H, Kotani M, Kase R, Kobayashi K, Takeuchi M, Ogasawara S, Maruyama Y, Nakajima T, Takaoka Y, Jigami Y (2002) Production in yeast of α-galactosidase A, a lysosomal enzyme applicable to enzyme replacement therapy for Fabry disease. Glycobiology 12:821–828Google Scholar
  149. 149.
    Rodríguez-López A, Alméciga-Díaz CJ, Sánchez J, Moreno J, Beltran L, Díaz D, Pardo A, Ramírez AM, Espejo-Mojica AJ, Pimentel L, Barrera LA (2016) Recombinant human N-acetylgalactosamine-6-sulfate sulfatase (GALNS) produced in the methylotrophic yeast Pichia pastoris. Sci Rep 6:29329Google Scholar
  150. 150.
    Gurramkonda C, Polez S, Skoko N, Adnan A, Gäbel T, Chugh D, Swaminathan S, Khanna N, Tisminetzky S, Rinas U (2010) Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin. Microb Cell Fact 9:31Google Scholar
  151. 151.
    Mansur M, Cabello C, Hernández L, País J, Varas L, Valdés J, Terrero Y, Hidalgo A, Plana L, Besada V, García L, Lamazares E, Castellanos L, Martínez E (2005) Multiple gene copy number enhances insulin precursor secretion in the yeast Pichia pastoris. Biotechnol Lett 27:339–345Google Scholar
  152. 152.
    Baeshen MN, Bouback TAF, Alzubaidi MA, Bora RS, Alotaibi MAT, Alabbas OTO, Alshahrani SM, Aljohani AAM, Munshi RAA, Al-Hejin A, Ahmed MMM, Redwan EM, Ramadan HAI, Saini KS, Baeshen NA (2016) Expression and purification of C-peptide containing insulin using Pichia pastoris expression system. BioMed Res Int 2016:e3423685Google Scholar
  153. 153.
    Porro D, Sauer M, Branduardi P, Mattanovich D (2005) Recombinant protein production in yeasts. Mol Biotechnol 31:245–259Google Scholar
  154. 154.
    Kobayashi K, Kuwae S, Ohya T, Ohda T, Ohyama M, Ohi H, Tomomitsu K, Ohmura T (2000) High-level expression of recombinant human serum albumin from the methylotrophic yeast Pichia pastoris with minimal protease production and activation. J Biosci Bioeng 89:55–61Google Scholar
  155. 155.
    Mallem M, Warburton S, Li F, Shandil I, Nylen A, Kim S, Jiang Y, Meehl M, d’Anjou M, Stadheim TA, Choi B-K (2014) Maximizing recombinant human serum albumin production in a Mut(s) Pichia pastoris strain. Biotechnol Prog 30:1488–1496Google Scholar
  156. 156.
    Näätsaari L, Mistlberger B, Ruth C, Hajek T, Hartner FS, Glieder A (2012) Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology. PLoS One 7:e39720Google Scholar
  157. 157.
    Storici F, Snipe JR, Chan GK, Gordenin DA, Resnick MA (2006) Conservative repair of a chromosomal double-strand break by single-strand DNA through two steps of annealing. Mol Cell Biol 26:7645–7657Google Scholar
  158. 158.
    Storici F, Durham CL, Gordenin DA, Resnick MA (2003) Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast. Proc Natl Acad Sci U S A 100:14994–14999Google Scholar
  159. 159.
    DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336–4343Google Scholar
  160. 160.
    Jacobs JZ, Ciccaglione KM, Tournier V, Zaratiegui M (2014) Implementation of the CRISPR-Cas9 system in fission yeast. Nat Commun 5:5344Google Scholar
  161. 161.
    Weninger A, Hatzl A-M, Schmid C, Vogl T, Glieder A (2016) Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris. J Biotechnol 235:139–149Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Charlot De Wachter
    • 1
    • 2
  • Linde Van Landuyt
    • 1
    • 2
  • Nico Callewaert
    • 1
    • 2
    Email author
  1. 1.VIB-UGent Center for Medical BiotechnologyGhentBelgium
  2. 2.Department of Biochemistry and MicrobiologyGhent UniversityGhentBelgium

Personalised recommendations