Logistics of Lignocellulosic Feedstocks: Preprocessing as a Preferable Option

  • Nils TippkötterEmail author
  • Sophie Möhring
  • Jasmine Roth
  • Helene Wulfhorst
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 166)


In comparison to crude oil, biorefinery raw materials are challenging in concerns of transport and storage. The plant raw materials are more voluminous, so that shredding and compacting usually are necessary before transport. These mechanical processes can have a negative influence on the subsequent biotechnological processing and shelf life of the raw materials. Various approaches and their effects on renewable raw materials are shown. In addition, aspects of decentralized pretreatment steps are discussed. Another important aspect of pretreatment is the varying composition of the raw materials depending on the growth conditions. This problem can be solved with advanced on-site spectrometric analysis of the material.

Graphical Abstract


Analytics Decentral Mechanical On-site Pre-treatment Renewable raw materials Storage 


  1. 1.
    Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38(4):522–550Google Scholar
  2. 2.
    Kromus S, Wachter B, Koschuh W, Mandl M, Krotscheck C, Narodoslwsky M (2004) The green biorefinery Austria – development of an integrated system fop green biomass utilization. Chem Biochem Eng Q 18(1):7–12Google Scholar
  3. 3.
    Schaffenberger M, Ecker J, Koschuh W, Essl R, Mandl MG, Boechzelt HG et al (2012) Green biorefinery – production of amino acids from grass silage juice using an ion exchanger device at pilot scale. Chem Eng Trans 29:505–510Google Scholar
  4. 4.
    Miao Z, Shastri Y, Grift TE, Hansen AC, Ting KC (2012) Lignocellulosic biomass feedstock transportation alternatives, logistics, equipment configurations, and modeling. Biofuels Bioprod Biorefin 6(3):351–362Google Scholar
  5. 5.
    Smeets EMW, Lewandowski IM, Faaij APC (2009) The economical and environmental performance of miscanthus and switchgrass production and supply chains in a European setting. Renew Sustain Energy Rev 13(6–7):1230–1245Google Scholar
  6. 6.
    Kurian JK, Nair GR, Hussain A, Raghavan GSV (2013) Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: a comprehensive review. Renew Sustain Energy Rev 25:205–219Google Scholar
  7. 7.
    Petrolia DR (2008) The economics of harvesting and transporting corn stover for conversion to fuel ethanol: a case study for Minnesota. Biomass Bioenergy 32:603–612Google Scholar
  8. 8.
    Panichelli L, Edgard G (2008) GIS-based approach for defining bioenergy facilities location: a case study in Northern Spain based on marginal delivery costs and resources competition between facilities. Biomass Bioenergy 32:289–300Google Scholar
  9. 9.
    Klose A, Drexl A (2005) Facility location models for distribution system design. Eur J Oper Res 162:4–29Google Scholar
  10. 10.
    ReVelle CS, Eiselt HA, Daskin MS (2008) A bibliography for some fundamental problem categories in discrete location science. Eur J Oper Res 184:817–848Google Scholar
  11. 11.
    Meloa MT, Nickel S, Saldanha-da-Gama F (2009) Invited review facility location and supply chain management – a review. Eur J Oper Res 196:401–412Google Scholar
  12. 12.
    Grossmann IE, Guillen-Gosalbez G (2010) Scope for the application of mathematical programming techniques in the synthesis and planning of sustainable processes. Comput Chem Eng 34(9):1365–1376Google Scholar
  13. 13.
    Heungjo A, Wilhelm EW, Searcy SW (2011) Biofuel and petroleum-based supply chain research: a literature review. Biomass Bioenergy 35:3763–3774Google Scholar
  14. 14.
    Lua X, Withers MR, Seifkar N et al (2015) Biomass logistics analysis for large scale biofuel production: case study of loblolly pine and switchgrass. Bioresour Technol 183:1–9Google Scholar
  15. 15.
    Searcy EM, Hess JR (2010) Uniform-format feedstock supply system: a commodity-scale design to produce an infrastructure-compatible biocrude from Lignocellulosic biomass. Idaho National Laboratory, Idaho Falls.
  16. 16.
    Verkerk PJ, Anttila P, Eggers J, Lindner M, Asikainen A (2011) The realisable potential supply of woody biomass from forests in the European Union. For Ecol Manag 261:2007–2015Google Scholar
  17. 17.
    Brosowski A, Thrän D, Mantau U, Mahro B, Erdmann G, Adler P, Stinner W, Reinhold G, Hering T, Blanke C (2016) A review of biomass potential and current utilisation – status quo for 93 biogenic wastes and residues in Germany. Biomass Bioenergy 95:257–272Google Scholar
  18. 18.
    Karlsson H, Borjesson P, Hansson PA, Ahlgren S (2014) Ethanol production in biorefineries using lignocellulosic feedstocke GHG performance, energy balance and implications of life cycle calculation methodology. J Clean Prod 83:420–427Google Scholar
  19. 19.
    Kim J, Realff MJ, Lee JH (2011) Optimal design and global sensitivity analysis of biomass supply chain networks for biofuels under uncertainty. Comput Chem Eng 35:1738–1751Google Scholar
  20. 20.
    Yu Y, Bartle J, Li CZ, Wu H (2009) Mallee biomass as a key bioenergy source in western Australia: importance of biomass supply chain. Energy Fuel 23:2009Google Scholar
  21. 21.
    Christian DG, Riche AB, Yates NE (2002) The yield and composition of switchgrass and coastal panic grass grown as a biofuel in Southern England. Bioresour Technol 83:115–124PubMedPubMedCentralGoogle Scholar
  22. 22.
    Sanderson MA, Reed RL, McLaughlin SB, Wullschleger SD, Conger BV, Parrish DJ, Wolfe DD, Taliaferrof C, Hopkins AA, Ocumpaugh WR, Hussey MA, Read JC, Tischler CR (1996) Switchgrass as a sustainable bioenergy crop. Bioresour Technol 56(1):83–93Google Scholar
  23. 23.
    Sanderson MA, Reed RL, Ocumpaugh WR, Hussey MA, Van Esbroeck G, Read JC et al (1999) Switchgrass cultivars and germplasm for biomass feedstock production in Texas. Bioresour Technol 67:209–219Google Scholar
  24. 24.
    Madakadze IC, Stewart KA, Peterson PR, Coulman BE, Smith DL (1999) Cutting frequency and nitrogen fertilization effects on yield and nitrogen concentration of switchgrass in a short season area. Crop Sci 39:552–557Google Scholar
  25. 25.
    Lemus R, Brummer EC, Moore KJ, Molstad NE, Burras CL, Barker MF (2002) Biomass yield and quality of 20 switchgrass populations in southern Iowa, USA. Biomass Bioenergy 23:433–442Google Scholar
  26. 26.
    Clifton-Brown JC, Lewandowski I, Andersson B, Basch G, Christian DG, Kjeldsen JB, Jorgensen U, Mortensen JV, Riche AB, Schwarz KU, Tayebi K, Teixeira F (2001) Performance of 15 Miscanthus genotypes at five sites in Europe. Agronomy 93:1013–1019Google Scholar
  27. 27.
    Lewandowski I, Clifton-Brown JC, Andersson B, Basch G, Christian DG, Jorgensen U, Jones MB, Riche AB, Schwarz KU, Tayebi K, Teixeira F (2003) Environment and harvest time affects the combustion qualities of Miscanthus genotypes. Agron J 95:1274–1280Google Scholar
  28. 28.
    Lewandowski I, Kicherer A (1997) Combustion quality of biomass: practical relevance and experiments to modify the biomass quality of Miscanthus x giganteus. Eur J Agron 6:163–177Google Scholar
  29. 29.
    Regassa TH, Wortmann CS (2014) Sweet sorghum as a bioenergy crop: literature review. Biomass Bioenergy 64:348–355Google Scholar
  30. 30.
    Bomberg M, Sanchez DL, Lipman TE (2014) Optimizing fermentation process miscanthus-to-ethanol biorefinery scale under uncertain conditions. Environ Res Lett 9(6). Google Scholar
  31. 31.
    Perlack RD, Stokes BJ (2011) U.S. Billion-ton update: biomass supply for a bioenergy and bioproducts industry. Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  32. 32.
    Langholtz MH, Stokes BJ, Eaton LM (2016) 2016 Billion-ton report: advancing domestic resources for a thriving bioeconomy, volume 1: economic availability of feedstocks. Oak Ridge National Laboratory, Oak Ridge, 448p.
  33. 33.
    Sharma B, Birrel S, Miguez FE (2017) Spatial modeling framework for bioethanol plant siting and biofuel production potential in the U.S. Appl Energy 91:75–86Google Scholar
  34. 34.
    Krasuska E, Cadórniga C, Tenorio JL, Testa G, Scordia D (2010) Potential land availability for energy crops production in Europe. Biofuels Bioprod Biorefin 4:658–673Google Scholar
  35. 35.
    Lovett AA, Sünnenberg GM, Richter GM, Dailey AG, Riche AB, Karp A (2009) Land use implications of increased biomass production identified by GIS-based suitability and yield mapping for Miscanthus in England. Bioenergy Res 2(1–2):17–28Google Scholar
  36. 36.
    Caslin B (2010) Energy crops agronomy—lessons to date. In Energy Crops Manual 2010. Teagasc—The Irish Agric. Food Devel. Author ( Accessed 9 May 2015
  37. 37.
    Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19(4):209–227Google Scholar
  38. 38.
    Heggenstaller AH, Annex RP, Liebman M, Sundberg DN, Gibson LR (2008) Productivity and nutrient dynamics in bioenergy double-cropping systems. Agron J 100:1740–1748Google Scholar
  39. 39.
    Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467Google Scholar
  40. 40.
    Bussamra BC, Freitasa S, Carvalho da Costa A (2015) Improvement on sugar cane bagasse hydrolysis using enzymatic mixture designed cocktail. Bioresour Technol 187:173–181PubMedPubMedCentralGoogle Scholar
  41. 41.
    Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26(4):361–375Google Scholar
  42. 42.
    Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2:26–40Google Scholar
  43. 43.
    Caroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60:165–182Google Scholar
  44. 44.
    Sivakumar G, Vail DR, Xu J, Burner DM, Lay JJO, Ge X, Weathers PJ (2010) Bioethanol und biodiesel: alternative liquid fuels for future generations. Eng Life Sci 10(1):8–18Google Scholar
  45. 45.
    Marvin WA, Schmidt LD, Benjaafar S, Tiffany DG, Daoutidis P (2012) Economic optimization of a lignocellulosic biomass-to-ethanol supply chain. Chem Eng Sci 67:68–79Google Scholar
  46. 46.
    Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568PubMedPubMedCentralGoogle Scholar
  47. 47.
    Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110(6):3552–3599PubMedPubMedCentralGoogle Scholar
  48. 48.
    Godin B, Lamaudiere S, Agneessens R et al (2013) Chemical characteristics and biofuel potential of several vegetal biomasses grown under a wide range of environmental conditions. Ind Crop Prod 48:1–12Google Scholar
  49. 49.
    Godin B, Lamaudiere S, Agneessens R et al (2013) Chemical characteristics and biofuels potentials of various plant biomasses: influence of the harvesting date. J Sci Food Agric 93:3216–3224PubMedPubMedCentralGoogle Scholar
  50. 50.
    Hodgson EM, Nowakowski DJ, Shield I, Riche A, Bridgwater AV, Clifton-Brown JC, Donnison IS (2011) Variation in Miscanthus chemical composition and implications for conversion by pyrolysis and thermo-chemical bio-refining for fuels and chemicals. Bioresour Technol 102:3411–3418PubMedPubMedCentralGoogle Scholar
  51. 51.
    Hodgson EM, Fahmi R, Yates N, Barraclough T, Shield I, Allison G, Bridgwater AV, Donnison IS (2010) Miscanthus as a feedstock for fast pyrolysis: does agronomic treatment affect quality? Bioresour Technol 101:6185–6191PubMedPubMedCentralGoogle Scholar
  52. 52.
    Godin B, Lamaudière S, Agneessens R et al (2013) Chemical composition and biofuel potentials of a wide diversity of plant biomasses. Energy Fuel 27:2588−2598Google Scholar
  53. 53.
    Biomass Feedstock Composition and Property Database.
  54. 54.
    Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW (2010) Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J Agric Food Chem 58(16):9043–9053PubMedPubMedCentralGoogle Scholar
  55. 55.
    Jin SY, Chen HZ (2007) Near-infrared analysis of the chemical composition of rice straw. Ind Crop Prod 26:207–211Google Scholar
  56. 56.
    Smith-Moritz AM, Chern M, Lao J, Sze-To WH, Heazlewood JL, Ronald PC, Vega-Sánchez ME (2011) Combining multivariate analysis and monosaccharide composition modeling to identify plant cell wall variations by Fourier transform near infrared spectroscopy. Plant Methods 7:26PubMedPubMedCentralGoogle Scholar
  57. 57.
    Lupoi JS, Singh S, Simmons BA, Henry RJ (2014) Assessment of lignocellulosic biomass using analytical spectroscopy: an evolution to high-throughput techniques. Bioenergy Res 7:1–23Google Scholar
  58. 58.
    Xu F, Yu J, Tesso T, Dowell F, Wang D (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energy 104:801–809Google Scholar
  59. 59.
    González-Peña M, Hale M (2011) Rapid assessment of physical properties and chemical composition of thermally modified wood by mid-infrared spectroscopy. Wood Sci Technol 45(1):83–102Google Scholar
  60. 60.
    Hobro AJ, Kuligowski J, Döll M, Lendl B (2010) Differentiation of walnut wood species and steam treatment using ATR-FTIR and partial least squares discriminant analysis. Anal Bioanal Chem 398:2713–2722PubMedPubMedCentralGoogle Scholar
  61. 61.
    Chen H, Ferrari C, Angiuli M, Yao J, Raspi C, Bramanti E (2010) Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohydr Polym 82:772–778Google Scholar
  62. 62.
    Popescu MC, Popescu CM, Lisa G, Sakata Y (2011) Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. J Mol Struct 988(1–3):65–72Google Scholar
  63. 63.
    Tsuchikawa S (2007) A review of recent near infrared research for wood and paper. Appl Spectrosc Rev 42:43–71Google Scholar
  64. 64.
    Ye XP, Liu L, Hayes D, Womac A, Hong KL, Sokhansanj S (2008) Fast classification and compositional analysis of cornstover fractions using Fourier transform near-infrared techniques. Bioresour Technol 99:7323–7332Google Scholar
  65. 65.
    Sanderson MA, Agblevor F, Collins M, Johnson DK (1996) Compositional analysis of biomass feedstocks by near infrared reflectance spectroscopy. Biomass Bioenergy 11:365–370Google Scholar
  66. 66.
    Gierlinger N, Schwanninger M, Hinterstoisser B, Wimmer R (2002) Rapid determination of heartwood extractives in Larix sp by means of Fourier transform near infrared spectroscopy. J Near Infrared Spectrosc 10:203–214Google Scholar
  67. 67.
    Mayes DM (1999) Grain quality monitor. WO Patent Application WO1999040419A1, 6 Feb 1998Google Scholar
  68. 68.
    Wright SL, Brumback TB, Niebur WS, Welle R (1999) Near infrared spectrometry for real time analysis of substances. WO Patent Application WO1999058959A1, 11 May 1998Google Scholar
  69. 69.
    Kormann G, Flohr W, Hoyme W, Correns N, Götz M, Rode M (2014) Spectrometric measuring head for harvesting machines and other agricultural machines. EP Patent EP1797414B1, 30 Sept 2004Google Scholar
  70. 70.
    Kormann G, Ohlemeyer H (2008) Measuring device of components in and/or properties of the crop. EP Patent EP1053671B1, 19 May 1999Google Scholar
  71. 71.
    Kessler W (2007) Multivariate Datenanalyse für die Pharma- Bio- und Prozessanalytik. Wiley-VCH, WeinheimGoogle Scholar
  72. 72.
    Esbensen KH (2004) Multivariate data analysis – in practice, 5th edn. CAMO Process AS, EsbjergGoogle Scholar
  73. 73.
    Shamsipur M, Zare-Shahabadi V, Hemmateenejad B, Akhond M (2006) Ant colony optimisation: a powerful tool for wavelength selection. J Chemometrics 20:146–157Google Scholar
  74. 74.
    Wulfhorst H, Duwe A, Tippkötter N (2016) Compositional analysis of pretreated (beech) wood using differential scanning calorimetry and multivariate data analysis. Tetrahedron. Google Scholar
  75. 75.
    Kim S, Dale BE (2015) Comparing alternative cellulosic biomass biorefining systems: centralized versus distributed processing systems. Biomass Bioenergy 74:135–147. CrossRefGoogle Scholar
  76. 76.
    Hamelinck CN, Suurs RAA, Faaij APC (2005) International bioenergy transport costs and energy balance. Biomass Bioenergy 29(2):114–134. CrossRefGoogle Scholar
  77. 77.
    Leboreiro J, Hilaly AK (2011) Biomass transportation model and optimum plant size for the production of ethanol. Bioresour Technol 102(3):2712–2723. CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Argo AM, Tan ECD, Inman D, Langholtz MH, Eaton LM, Jacobson JJ, Wright CT, Muth DJ, Wu MM, Chiu YW, Graham RL (2013) Investigation of biochemical biorefinery sizing and environmental sustainability impacts for conventional bale system and advanced uniform biomass logistics designs. Biofuels Bioprod Biorefin 7(3):282–302. CrossRefGoogle Scholar
  79. 79.
    Hess JR, Wright CT, Kenney KL, Searcy EM (2009) Uniform-format solid feedstock supply system: a commodity-scale design to produce an infrastructure-compatible bulk solid from lignocellulosic biomass. Idaho National Laboratory (INL)Google Scholar
  80. 80.
    Perlack RD, Turhollow AF (2003) Feedstock cost analysis of corn stover residues for further processing. Energy 28(14):1395–1403. CrossRefGoogle Scholar
  81. 81.
    Muth DJ, Langholtz MH, Tan ECD, Jacobson JJ, Schwab A, Wu MM, Argo A, Brandt CC, Cafferty KG, Chiu YW, Dutta A, Eaton LM, Searcy EM (2014) Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs. Biofuels Bioprod Biorefin 8(4):545–567. CrossRefGoogle Scholar
  82. 82.
    Chiueh PT, Lee KC, Syu FS, Lo SL (2012) Implications of biomass pretreatment to cost and carbon emissions: case study of rice straw and Pennisetum in Taiwan. Bioresour Technol 108:285–294. CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Zhu XY, Yao QZ (2011) Logistics system design for biomass-to-bioenergy industry with multiple types of feedstocks. Bioresour Technol 102(23):10936–10945. CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Richard TL (2010) Challenges in scaling up biofuels infrastructure. Science 329(5993):793–796. CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83(1):37–46. CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Miao Z, Grift TE, Hansen AC, Ting KC (2011) Energy requirement for comminution of biomass in relation to particle physical properties. Ind Crop Prod 33(2):504–513. CrossRefGoogle Scholar
  87. 87.
    Miao ZW, Phillips JW, Grift TE, Mathanker SK (2013) Energy and pressure requirement for compression of Miscanthus giganteus to an extreme density. Biosyst Eng 114(1):21–25. CrossRefGoogle Scholar
  88. 88.
    Ebeling JM, Jenkins BM (1985) Physical and chemical properties of biomass fuels. Trans ASAE 28(3):898–902Google Scholar
  89. 89.
    Chevanan N, Womac AR, Bitra VS, Igathinathane C, Yang YT, Miu PI, Sokhansanj S (2010) Bulk density and compaction behavior of knife mill chopped switchgrass, wheat straw, and corn stover. Bioresour Technol 101(1):207–214. CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Lam PS, Sokhansanj S, Bi X, Lim CJ, Naimi LJ, Hoque M, Mani S, Womac AR, Ye XP, Narayan S (2008) Bulk density of wet and dry wheat straw and switchgrass particles. Appl Eng Agric 24(3):351–358Google Scholar
  91. 91.
    Mani S, Tabil LG, Sokhansanj S (2004) Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass Bioenergy 27(4):339–352. CrossRefGoogle Scholar
  92. 92.
    Daystar J, Gonzalez R, Reeb C, Venditti R, Treasure T, Abt R, Kelley S (2014) Economics, environmental impacts, and supply chain analysis of cellulosic biomass for biofuels in the Southern US: pine, eucalyptus, unmanaged hardwoods, forest residues, Switchgrass, and sweet sorghum. Bioresources 9(1):393–444Google Scholar
  93. 93.
    Li YD, Liu H (2000) High-pressure densification of wood residues to form an upgraded fuel. Biomass Bioenergy 19(3):177–186. CrossRefGoogle Scholar
  94. 94.
    Kaliyan N, Morey RV (2010) Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresour Technol 101(3):1082–1090. CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Tumuluru JS, Wright CT, Hess JR, Kenney KL (2011) A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels Bioprod Biorefin 5(6):683–707. CrossRefGoogle Scholar
  96. 96.
    Mani S, Tabil LG, Sokhansanj S (2006) Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenergy 30(7):648–654. CrossRefGoogle Scholar
  97. 97.
    Hess JR, Wright CT, Kenney KL (2007) Cellulosic biomass feedstocks and logistics for ethanol production. Biofuels Bioprod Biorefin 1(3):181–190. CrossRefGoogle Scholar
  98. 98.
    Shinners KJ, Boettcher GC, Muck RE, Weimer PJ, Casler MD (2010) Harvest and storage of two perennial grasses as biomass feedstocks. Trans ASABE 53(2):359–370Google Scholar
  99. 99.
    Kaliyan N, Morey RV, White MD, Doering A (2009) Roll press briquetting and pelleting of corn stover and switchgrass. Trans ASABE 52(2):543–555Google Scholar
  100. 100.
    Zhu XY, Li XP, Yao QZ, Chen YR (2011) Challenges and models in supporting logistics system design for dedicated-biomass-based bioenergy industry. Bioresour Technol 102(2):1344–1351. CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Poddar S, Kamruzzaman M, Sujan SMA, Hossain M, Jamal MS, Gafur MA, Khanam M (2014) Effect of compression pressure on lignocellulosic biomass pellet to improve fuel properties: higher heating value. Fuel 131:43–48. CrossRefGoogle Scholar
  102. 102.
    Hoover AN, Tumuluru JS, Teymouri F, Moore J, Gresham G (2014) Effect of pelleting process variables on physical properties and sugar yields of ammonia fiber expansion pretreated corn stover. Bioresour Technol 164:128–135. CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Wendt LM, Bonner IJ, Hoover AN, Emerson RM, Smith WA (2014) Influence of airflow on laboratory storage of high moisture corn Stover. Bioenergy Res 7(4):1212–1222. CrossRefGoogle Scholar
  104. 104.
    Martelli R, Bentini M (2015) Harvest storage and handling of round and square bales of giant reed and switchgrass, an economic and technical evaluation. Biomass Bioenergy 73:67–76. CrossRefGoogle Scholar
  105. 105.
    Shinners KJ, Wepner AD, Muck RE, Weimer PJ (2011) Aerobic and anaerobic storage of single-pass, chopped corn Stover. Bioenergy Res 4(1):61–75. CrossRefGoogle Scholar
  106. 106.
    Mooney DF, Larson JA, English BC, Tyler DD (2012) Effect of dry matter loss on profitability of outdoor storage of switchgrass. Biomass Bioenergy 44:33–41. CrossRefGoogle Scholar
  107. 107.
    Yu TE, Larson JA, English BC, Boyer CN, Tyler DD, Castillo-Villar KK (2015) Influence of particle size and packaging on storage dry matter losses for switchgrass. Biomass Bioenergy 73:135–144. CrossRefGoogle Scholar
  108. 108.
    Williams SD, Shinners KJ (2012) Farm-scale anaerobic storage and aerobic stability of high dry matter sorghum as a biomass feedstock. Biomass Bioenergy 46:309–316. CrossRefGoogle Scholar
  109. 109.
    Peciulyte A, Karlstom K, Larsson PT, Olsson L (2015) Impact of the supramolecular structure of cellulose on the efficiency of enzymatic hydrolysis. Biotechnol Biofuels 8, Art 56.
  110. 110.
    Santi C, Milagres AMF, Ferraz A, Carvalho W (2013) The effects of lignin removal and drying on the porosity and enzymatic hydrolysis of sugarcane bagasse. Cellulose 20(6):3165–3177. CrossRefGoogle Scholar
  111. 111.
    Tumuluru JS, Tabil LG, Song Y, Iroba KL, Meda V (2015) Impact of process conditions on the density and durability of wheat, oat, canola, and barley straw briquettes. Bioenergy Res 8(1):388–401. CrossRefGoogle Scholar
  112. 112.
    Rudolfsson M, Stelte W, Lestander TA (2015) Process optimization of combined biomass torrefaction and pelletization for fuel pellet production – a parametric study. Appl Energy 140:378–384. CrossRefGoogle Scholar
  113. 113.
    Zheng AQ, Zhao ZL, Chang S, Huang Z, Zhao K, Wei GQ, He F, Li HB (2015) Comparison of the effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs. Bioresour Technol 176:15–22. CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Bach QV, Tran KQ (2015) Dry and wet torrefaction of woody biomass – a comparative Studyon combustion kinetics. Energy Procedia 75:150–155Google Scholar
  115. 115.
    Kumar A, Sokhansanj S (2007) Switchgrass (Panicum vigratum, L.) delivery to a biorefnery using integrated biomass supply analysis and logistics (IBSAL) model. Bioresour Technol 98:1033–1044PubMedPubMedCentralGoogle Scholar
  116. 116.
    Bruins ME, Sanders JPM (2012) Small-scale processing of biomass for biorefinery. Biofuels Bioprod Biorefin 6:135–145Google Scholar
  117. 117.
    Judd JD, Sarin SC, Cundiff JS (2012) Design, modeling, and analysis of a feedstock logistics system. Bioresour Technol 103(1):209–218PubMedPubMedCentralGoogle Scholar
  118. 118.
    Kolfschoten RC, Bruins ME, Sanders JPM (2014) Opportunities for small-scale biorefinery for production of sugar and ethanol in the Netherlands. Biofuels Bioprod Biorefin 8:475–486Google Scholar
  119. 119.
    Annevelink E, de Mol RM (2014) The logistics of new biomass chains on a regional scale in the Netherlands. In: Hoffman C, Baxter D, Maniatis K et al (eds) PAPERS OF THE 22nd European international biomass conference – setting the course for a biobased economy, Hamburg, 23–26 June 2014, pp 59–63Google Scholar
  120. 120.
    Caffrey KR, Veal MW, Chinn MS (2014) The farm to biorefinery continuum: a techno-economic and LCA analysis of ethanol production from sweet sorghum juice. Agric Syst 130:55–66Google Scholar
  121. 121.
    Eranki PL, Bals BD, Dale BE (2011) Advanced regional biomass processing depots: a key to the logistical challenges of the cellulosic biofuel industry. Biofuels Bioprod Biorefin 5(6):621–630. CrossRefGoogle Scholar
  122. 122.
    Sun Y, Cheng JY (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11. Pii: S0960-8524(01)00212-7PubMedPubMedCentralGoogle Scholar
  123. 123.
    Hu F, Ragauskas A (2012) Pretreatment and lignocellulosic chemistry. Bioenergy Res 5(4):1043–1066. CrossRefGoogle Scholar
  124. 124.
    Li HQ, Xu J (2013) A new correction method for determination on carbohydrates in lignocellulosic biomass. Bioresour Technol 138:373–376. CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Knutsen JS, Liberatore MW (2010) Rheology modification and enzyme kinetics of high-solids cellulosic slurries: an economic analysis. Energy Fuel 24:6506–6512. CrossRefGoogle Scholar
  126. 126.
    Modenbach AA, Nokes SE (2013) Enzymatic hydrolysis of biomass at high-solids loadings – a review. Biomass Bioenergy 56:526–544. CrossRefGoogle Scholar
  127. 127.
    Roche CM, Dibble CJ, Stickel JJ (2009) Laboratory-scale method for enzymatic saccharification of lignocellulosic biomass at high-solids loadings. Biotechnol Biofuels 2. PubMedPubMedCentralGoogle Scholar
  128. 128.
    Huang J, Zhang J, He YQ, Bao J, Dai GC (2013) Dynamic characteristics and speed control strategy of cellulose hydrolysis reactor at high solids loading. Int J Chem React Eng 11.
  129. 129.
    Ludwig D, Michael B, Hirth T, Rupp S, Zibek S (2014) High solids enzymatic hydrolysis of pretreated lignocellulosic materials with a powerful stirrer concept. Appl Biochem Biotechnol 172(3):1699–1713. CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    He YQ, Zhang LP, Zhang J, Bao J (2014) Helically agitated mixing in dry dilute acid pretreatment enhances the bioconversion of corn stover into ethanol. Biotechnol Biofuels 7. PubMedPubMedCentralGoogle Scholar
  131. 131.
    Tippkoetter N, Duwe AM, Wiesen S, Sieker T, Ulber R (2014) Enzymatic hydrolysis of beech wood lignocellulose at high solid contents and its utilization as substrate for the production of biobutanol and dicarboxylic acids. Bioresour Technol 167:447–455. CrossRefGoogle Scholar
  132. 132.
    Kumar A, Cameron JB, Flynn PC (2005) Pipeline transport and simultaneous saccharification of corn stover. Bioresour Technol 96(7):819–829. CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Luk J, Mohamadabadi HS, Kumar A (2014) Pipeline transport of biomass: experimental development of wheat straw slurry pressure loss gradients. Biomass Bioenergy 64:329–336. CrossRefGoogle Scholar
  134. 134.
    Gubba SR, Ingham DB, Larsen KJ, Ma L, Pourkashanian M, Qian X, Williams A, Yan Y (2012) Investigations of the transportation characteristics of biomass fuel particles in a horizontal pipeline through CFD modelling and experimental measurement. Biomass Bioenergy 46:492–510. CrossRefGoogle Scholar
  135. 135.
    Kumar A, Cameron JB, Flynn PC (2004) Pipeline transport of biomass. Appl Biochem Biotechnol 113:27–39. CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Weinberg ZG, Ashbell G (2003) Engineering aspects of ensiling. Biochem Eng J 13(2–3):181–188. Pii: S1369-703x(02)00130-4Google Scholar
  137. 137.
    McEniry J, King C, O’Kiely P (2014) Silage fermentation characteristics of three common grassland species in response to advancing stage of maturity and additive application. Grass Forage Sci 69(3):393–404. CrossRefGoogle Scholar
  138. 138.
    Thompson DN, Barnes JA, Houghton TP (2005) Effect of additions on ensiling and microbial community of senesced wheat straw. Appl Biochem Biotechnol 121:21–46. CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Ambye-Jensen M, Johansen KS, Didion T, Kadar Z, Schmidt JE, Meyer AS (2013) Ensiling as biological pretreatment of grass (Festulolium Hykor): the effect of composition, dry matter, and inocula on cellulose convertibility. Biomass Bioenergy 58:303–312. CrossRefGoogle Scholar
  140. 140.
    Oleskowicz-Popiel P, Thomsen AB, Schmidt JE (2011) Ensiling – wet-storage method for lignocellulosic biomass for bioethanol production. Biomass Bioenergy 35(5):2087–2092. CrossRefGoogle Scholar
  141. 141.
    Digman MF, Shinners KJ, Casler MD, Dien BS, Hatfield RD, Jung HJG, Muck RE, Weimer PJ (2010) Optimizing on-farm pretreatment of perennial grasses for fuel ethanol production. Bioresour Technol 101(14):5305–5314. CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Sieker T, Neuner A, Dimitrova D, Tippkötter N, Muffler K, Bart HJ, Heinzle E, Ulber R (2011) Ethanol production from grass silage by simultaneous pretreatment, saccharification and fermentation: first steps in the process development. Eng Life Sci 11(4):436–442Google Scholar
  143. 143.
    Digman MF, Shinners KJ, Muck RE, Dien BS (2010) Full-scale on-farm pretreatment of perennial grasses with dilute acid for fuel ethanol production. Bioenergy Res 3(4):335–341. CrossRefGoogle Scholar
  144. 144.
    Kitamoto HK, Horita M, Cai YM, Shinozaki Y, Sakaki K (2011) Silage produces biofuel for local consumption. Biotechnol Biofuels 4, Art 46. PubMedPubMedCentralGoogle Scholar
  145. 145.
    Horita M, Kitamoto H, Kawaide T, Tachibana Y, Shinozaki Y (2015) On-farm solid state simultaneous saccharification and fermentation of whole crop forage rice in wrapped round bale for ethanol production. Biotechnol Biofuels 8:10. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Nils Tippkötter
    • 1
    Email author
  • Sophie Möhring
    • 1
  • Jasmine Roth
    • 1
  • Helene Wulfhorst
    • 1
  1. 1.Bioprocess EngineeringUniversity of Applied Sciences AachenAachenGermany

Personalised recommendations