Reactors for Microbial Electrobiotechnology

  • Thomas Krieg
  • Joana Madjarov
  • Luis F. M. Rosa
  • Franziska Enzmann
  • Falk Harnisch
  • Dirk Holtmann
  • Korneel RabaeyEmail author
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 167)



From the first electromicrobial experiment to a sophisticated microbial electrochemical process – it all takes place in a reactor. Whereas the reactor design and materials used strongly influence the obtained results, there are no common platforms for MES reactors. This is a critical convention gap, as cross-comparison and benchmarking among MES as well as MES vs. conventional biotechnological processes is needed. Only knowledge driven engineering of MES reactors will pave the way to application and commercialization. In this chapter we first assess the requirements on reactors to be used for bioelectrochemical systems as well as potential losses caused by the reactor design. Subsequently, we compile the main types and designs of reactors used for MES so far, starting from simple H-cells to stirred tank reactors. We conclude with a discussion on the weaknesses and strengths of the existing types of reactors for bioelectrochemical systems that are scored on design criteria and draw conclusions for the future engineering of MES reactors.

Graphical Abstract


Bioelectrochemical systems Bioelectrosynthesis Microbial electrochemical technology (MET) Microbial electrolysis cells (MEC) Microbial electrosynthesis (MES) Reactor concepts Scoring 


  1. 1.
    Hongo M, Iwahara M (1979) Application of electro-energizing method to L-glutamic acid fermentation. Agric Biol Chem 43(10):2075–2081. CrossRefGoogle Scholar
  2. 2.
    Schievano A, Pepé Sciarria T, Vanbroekoven K et al (2016) Electro-fermentation – merging electrochemistry with fermentation in industrial applications. Trends Biotechnol 34(11):1–13. CrossRefGoogle Scholar
  3. 3.
    Schröder U, Harnisch F, Angenent LT (2015) Microbial electrochemistry and technology: terminology and classification. Energy Environ Sci 8(2):513–519. CrossRefGoogle Scholar
  4. 4.
    Rabaey K, Rozendal RA (2010) Microbial electrosynthesis – revisiting the electrical route for microbial production. Nat Rev Microbiol 8(10):706–716. CrossRefPubMedGoogle Scholar
  5. 5.
    Krieg T, Sydow A, Schröder U, Schrader J, Holtmann D (2014) Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends Biotechnol 32(12):645–655. CrossRefPubMedGoogle Scholar
  6. 6.
    Schmitz LM, Rosenthal K, Lütz S (2017) Enzyme-based electrobiotechnological synthesis. Adv Biochem Eng Biotechnol. Google Scholar
  7. 7.
    Kerzenmacher S (2017) Engineering of microbial electrodes. Adv Biochem Eng Biotechnol. Google Scholar
  8. 8.
    Rosenbaum MA, Berger C, Schmitz S, Uhlig R (2017) Microbial electrosynthesis: pure and defined mixed culture engineering. Adv Biochem Eng Biotechnol. Google Scholar
  9. 9.
    Roy S, Schievano A, Pant D (2016) Electro-stimulated microbial factory for value added product synthesis. Bioresour Technol 213:129–139. CrossRefPubMedGoogle Scholar
  10. 10.
    Deeke A, Sleutels THJA, Donkers TFW, Hamelers HVM, Buisman CJN, Ter Heijne A (2015) Fluidized capacitive bioanode as a novel reactor concept for the microbial fuel cell. Environ Sci Technol 49(3):1929–1935. CrossRefPubMedGoogle Scholar
  11. 11.
    Janicek A, Fan Y, Liu H (2014) Design of microbial fuel cells for practical application: a review and analysis of scale-up studies. Biofuels 502:79–92CrossRefGoogle Scholar
  12. 12.
    Verstraete W, Rabaey K, Logan BE et al (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192. CrossRefGoogle Scholar
  13. 13.
    Moscoviz R, Toledo-Alarcón J, Trably E, Bernet N (2016) Electro-fermentation: how to drive fermentation using electrochemical systems. Trends Biotechnol 34(11):856–865. CrossRefPubMedGoogle Scholar
  14. 14.
    Rosa LFM, Hunger S, Gimkiewicz C, Zehnsdorf A, Harnisch F (2016) Paving the way for bioelectrotechnology: integrating electrochemistry into bioreactors. Eng Life Sci 53(9):1689–1699. CrossRefGoogle Scholar
  15. 15.
    Logan BE (2009) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85(6):1665–1671. CrossRefPubMedGoogle Scholar
  16. 16.
    Kipf E, Koch J, Geiger B et al (2013) Systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1. Bioresour Technol 146:386–392. CrossRefPubMedGoogle Scholar
  17. 17.
    Baudler A, Schmidt I, Langner M, Greiner A, Schröder U (2015) Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy Environ Sci 8(7):2048–2055. CrossRefGoogle Scholar
  18. 18.
    Clauwaert P, Aelterman P, Pham TH et al (2008) Minimizing losses in bio-electrochemical systems: the road to applications. Appl Microbiol Biotechnol 79(6):901–913. CrossRefPubMedGoogle Scholar
  19. 19.
    Zhou M, Chi M, Luo J, He H, Jin T (2011) An overview of electrode materials in microbial fuel cells. J Power Sources 196(10):4427–4435. CrossRefGoogle Scholar
  20. 20.
    Patil SA, Gildemyn S, Pant D, Zengler K, Logan BE, Rabaey K (2015) A logical data representation framework for electricity-driven bioproduction processes. Biotechnol Adv 33(6:736–744. CrossRefGoogle Scholar
  21. 21.
    Koch C, Harnisch F (2016) Is there a specific ecological niche for electroactive microorganisms? ChemElectroChem 3(9):1282–1295. CrossRefGoogle Scholar
  22. 22.
    Simonte F, Sturm G, Gescher J, Sturm-Richter K (2017) Extracellular electron transfer and biosensors. Adv Biochem Eng Biotechnol. Google Scholar
  23. 23.
    Vidakovic-Koch T (2017) Electron transfer between enzymes and electrodes. Adv Biochem Eng Biotechnol. Google Scholar
  24. 24.
    ter Heijne A, Geppert F, Sleutels THJA, Batlle-Vilanova P, Liu D, Puig S (2017) Mixed culture biocathodes for production of hydrogen, methane, and carboxylates. Adv Biochem Eng Biotechnol. Google Scholar
  25. 25.
    Sharma M, Bajracharya S, Gildemyn S et al (2014) A critical revisit of the key parameters used to describe microbial electrochemical systems. Electrochim Acta 140:191–208. CrossRefGoogle Scholar
  26. 26.
    Korth B, Harnisch F (2017) Modeling microbial electrosynthesis. Adv Biochem Eng Biotechnol. Google Scholar
  27. 27.
    Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26(8):450–459. CrossRefPubMedGoogle Scholar
  28. 28.
    Xie X, Yu G, Liu N, Bao Z, Criddle CS, Cui Y (2012) Graphene–sponges as high-performance low-cost anodes for microbial fuel cells. Energy Environ Sci 5(5):6862. CrossRefGoogle Scholar
  29. 29.
    Luther AK, Desloover J, Fennell DE, Rabaey K (2015) Electrochemically driven extraction and recovery of ammonia from human urine. Water Res 87:367–377. CrossRefPubMedGoogle Scholar
  30. 30.
    Cheng S, Logan BE (2011) High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresour Technol 102(3):3571–3574. CrossRefPubMedGoogle Scholar
  31. 31.
    Fan Y, Hu H, Liu H (2007) Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 171(2):348–354. CrossRefGoogle Scholar
  32. 32.
    Harnisch F, Wirth S, Schröder U (2009) Electrochemistry communications effects of substrate and metabolite crossover on the cathodic oxygen reduction reaction in microbial fuel cells: platinum vs. iron (II) phthalocyanine based electrodes. Electrochem Commun 11(11):2253–2256. CrossRefGoogle Scholar
  33. 33.
    Harnisch F, Schröder U (2009) Selectivity versus mobility: separation of anode and cathode in microbial bioelectrochemical systems. ChemSusChem 2(10):921–926. CrossRefPubMedGoogle Scholar
  34. 34.
    Cheng S, Liu H, Logan BE (2006) Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol 40(7):2426–2432. CrossRefPubMedGoogle Scholar
  35. 35.
    Madjarov J, Popat SC, Erben J, Götze A, Zengerle R, Kerzenmacher S (2017) Revisiting methods to characterize bioelectrochemical systems: the influence of uncompensated resistance (iRu-drop), double layer capacitance, and junction potential. J Power Sources 356:408–418. CrossRefGoogle Scholar
  36. 36.
    Popat SC, Ki D, Rittmann BE, Torres CI (2012) Importance of OH- transport from cathodes in microbial fuel cells. ChemSusChem 5(6):1071–1079. CrossRefPubMedGoogle Scholar
  37. 37.
    Oliot M, Galier S, Roux de Balmann H, Bergel A (2016) Ion transport in microbial fuel cells: key roles, theory and critical review. Appl Energy 183:1682–1704. CrossRefGoogle Scholar
  38. 38.
    Sleutels THJA, Hamelers HVM, Buisman CJN (2011) Effect of mass and charge transport speed and direction in porous anodes on microbial electrolysis cell performance. Bioresour Technol 102(1):399–403. CrossRefPubMedGoogle Scholar
  39. 39.
    Zhao L, Li J, Battaglia F, He Z (2016) Computational investigation of the flow field contribution to improve electricity generation in granular activated carbon-assisted microbial fuel cells. J Power Sources 333:83–87. CrossRefGoogle Scholar
  40. 40.
    Brown RK, Harnisch F, Wirth S et al (2014) Evaluating the effects of scaling up on the performance of bioelectrochemical systems using a technical scale microbial electrolysis cell. Bioresour Technol 163:206–213. CrossRefPubMedGoogle Scholar
  41. 41.
    Sleutels THJA, Lodder R, Hamelers HVM, Buisman CJN (2009) Improved performance of porous bio-anodes in microbial electrolysis cells by enhancing mass and charge transport. Int J Hydrog Energy 34(24):9655–9661. CrossRefGoogle Scholar
  42. 42.
    Liu H, Cheng S, Huang L, Logan BE (2008) Scale-up of membrane-free single-chamber microbial fuel cells. J Power Sources 179(1):274–279. CrossRefGoogle Scholar
  43. 43.
    Cheng S, Logan BE (2011) Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Bioresour Technol 102(6):4468–4473. CrossRefPubMedGoogle Scholar
  44. 44.
    Zhang Y, Angelidaki I (2014) Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges. Water Res 56:11–25. CrossRefPubMedGoogle Scholar
  45. 45.
    Geppert F, Liu D, van Eerten-Jansen M, Weidner E, Buisman C, ter Heijne A (2016) Bioelectrochemical power-to-gas: state of the art and future perspectives. Trends Biotechnol 34(11). CrossRefGoogle Scholar
  46. 46.
    Lovley DR (2011) Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environ Microbiol Rep 3(1):27–35. CrossRefPubMedGoogle Scholar
  47. 47.
    Liu H, Cheng S, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39(2):658–662. CrossRefGoogle Scholar
  48. 48.
    Logan BE, Call D, Cheng S et al (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42(23):8630–8640. CrossRefPubMedGoogle Scholar
  49. 49.
    Van Eerten-Jansen MCAA, Heijne AT, Buisman CJN, Hamelers HVM (2012) Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives. Int J Energy Res 36(6):809–819. CrossRefGoogle Scholar
  50. 50.
    Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39(11):4317–4320. CrossRefPubMedGoogle Scholar
  51. 51.
    Xu H, Wang K, Holmes DE (2014) Bioelectrochemical removal of carbon dioxide (CO2): an innovative method for biogas upgrading. Bioresour Technol 173:392–398. CrossRefPubMedGoogle Scholar
  52. 52.
    Nevin KP, Hensley SA, Franks AE et al (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77(9):2882–2886. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Park DH, Laivenieks M, Guettler MV, Jain MK (1999) Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl Environ Microbiol 65(7):2912–2917PubMedPubMedCentralGoogle Scholar
  54. 54.
    Nevin KP, Woodard TL, Franks AE (2010) Microbial electrosynthesis: feeding microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic. MBio 1(2):e00103–e00110. EditorCrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Jourdin L, Freguia S, Donose BC et al (2014) A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. J Mater Chem A 2(32):13093. CrossRefGoogle Scholar
  56. 56.
    Flynn JM, Ross DE, Hunt KA, Bond DR, Gralnick JA (2010) Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. MBio 1(5):1–8. CrossRefGoogle Scholar
  57. 57.
    Emde R, Schink B (1990) Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a three-electrode amperometric culture system. Appl Environ Microbiol 56(9):2771–2776PubMedPubMedCentralGoogle Scholar
  58. 58.
    Young Jeon B, Lae Jung I, Hyun Park D (2012) Conversion of carbon dioxide to metabolites by Clostridium acetobutylicum KCTC1037 cultivated with electrochemical reducing power. Adv Microbiol 2(3):332–339. CrossRefGoogle Scholar
  59. 59.
    Ditzig J, Liu H, Logan BE (2007) Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR). Int J Hydrog Energy 32(13):2296–2304. CrossRefGoogle Scholar
  60. 60.
    Gildemyn S, Verbeeck K, Slabbinck R, Andersen SJ, Prévoteau A, Rabaey K (2015) Integrated production, extraction, and concentration of acetic acid from CO2 through microbial electrosynthesis. Environ Sci Technol Lett 2(11):325–328. CrossRefGoogle Scholar
  61. 61.
    Cheng S, Logan BE (2007) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci U S A 104(47):18871–18873. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrog Energy 31(12):1632–1640. CrossRefGoogle Scholar
  63. 63.
    Zhou M, Chen J, Freguia S, Rabaey K, Keller J (2013) Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol. Environ Sci Technol 47(19):11199–11205. CrossRefPubMedGoogle Scholar
  64. 64.
    Sleutels THJA, Hamelers HVM, Rozendal RA, Buisman CJN (2009) Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes. Int J Hydrog Energy 34(9):3612–3620. CrossRefGoogle Scholar
  65. 65.
    Luo X, Zhang F, Liu J, Zhang X, Huang X, Logan BE (2014) Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions. Environ Sci Technol 48(15):8911–8918. CrossRefPubMedGoogle Scholar
  66. 66.
    Hintermayer S, Yu S, Krömer JO, Weuster-Botz D (2016) Anodic respiration of Pseudomonas putida KT2440 in a stirred-tank bioreactor. Biochem Eng J 115:1–13. CrossRefGoogle Scholar
  67. 67.
    Call D, Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol 42(9):3401–3406. CrossRefPubMedGoogle Scholar
  68. 68.
    Wang A, Liu W, Cheng S, Xing D, Zhou J, Logan BE (2009) Source of methane and methods to control its formation in single chamber microbial electrolysis cells. Int J Hydrog Energy 34(9):3653–3658. CrossRefGoogle Scholar
  69. 69.
    Rader GK, Logan BE (2010) Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate. Int J Hydrog Energy 35(17):8848–8854. CrossRefGoogle Scholar
  70. 70.
    Cusick RD, Bryan B, Parker DS et al (2011) Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl Microbiol Biotechnol 89(6):2053–2063. CrossRefPubMedGoogle Scholar
  71. 71.
    Hu H, Fan Y, Liu H (2008) Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res 42(15):4172–4178. CrossRefPubMedGoogle Scholar
  72. 72.
    Guo Z, Thangavel S, Wang L et al (2017) Efficient methane production from beer wastewater in a membraneless microbial electrolysis cell with a stacked cathode: the effect of the cathode/anode ratio on bioenergy recovery. Energy Fuel 31(1):615–620. CrossRefGoogle Scholar
  73. 73.
    Guo K, Tang X, Du Z, Li H (2010) Hydrogen production from acetate in a cathode-on-top single-chamber microbial electrolysis cell with a mipor cathode. Biochem Eng J 51(1):48–52. CrossRefGoogle Scholar
  74. 74.
    Katuri KP, Werner CM, Jimenez-Sandoval RJ et al (2014) A novel anaerobic electrochemical membrane bioreactor (AnEMBR) with conductive hollow-fiber membrane for treatment of low-organic strength solutions. Environ Sci Technol 48(21):12833–12841. CrossRefPubMedGoogle Scholar
  75. 75.
    Liu J, Zhang F, He W, Yang W, Feng Y, Logan BE (2014) A microbial fluidized electrode electrolysis Cell (MFEEC) for enhanced hydrogen production. J Power Sources 271:530–533. CrossRefGoogle Scholar
  76. 76.
    Cheng KY, Ho G, Cord-Ruwisch R (2011) Novel methanogenic rotatable bioelectrochemical system operated with polarity inversion. Environ Sci Technol 45(2):796–802. CrossRefPubMedGoogle Scholar
  77. 77.
    Bo T, Zhu X, Zhang L et al (2014) A new upgraded biogas production process: coupling microbial electrolysis cell and anaerobic digestion in single-chamber, barrel-shape stainless steel reactor. Electrochem Commun 45:67–70. CrossRefGoogle Scholar
  78. 78.
    Clauwaert P, Verstraete W (2009) Methanogenesis in membraneless microbial electrolysis cells. Appl Microbiol Biotechnol 82(5):829–836. CrossRefPubMedGoogle Scholar
  79. 79.
    Fu Q, Kuramochi Y, Fukushima N, Maeda H, Sato K, Kobayashi H (2015) Bioelectrochemical analyses of the development of a thermophilic biocathode catalyzing electromethanogenesis. Environ Sci Technol 49(2):1225–1232. CrossRefPubMedGoogle Scholar
  80. 80.
    Xafenias N, Mapelli V (2014) Performance and bacterial enrichment of bioelectrochemical systems during methane and acetate production. Int J Hydrog Energy 39(36):21864–21875. CrossRefGoogle Scholar
  81. 81.
    Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43(10):3953–3958. CrossRefPubMedGoogle Scholar
  82. 82.
    Yang W, Kim K-Y, Saikaly PE et al (2017) The impact of new cathode materials relative to baseline performance of microbial fuel cells all with the same architecture and solution chemistry. Energy Environ Sci 10(5):1025–1033. CrossRefGoogle Scholar
  83. 83.
    Kobayashi H, Saito N, Fu Q et al (2013) Bio-electrochemical property and phylogenetic diversity of microbial communities associated with bioelectrodes of an electromethanogenic reactor. J Biosci Bioeng 116:114–117. CrossRefPubMedGoogle Scholar
  84. 84.
    Call DF, Logan BE (2011) A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells. Biosens Bioelectron 26(11):4526–4531. CrossRefPubMedGoogle Scholar
  85. 85.
    Hu H, Fan Y, Liu H (2009) Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts. Int J Hydrog Energy 34(20):8535–8542. CrossRefGoogle Scholar
  86. 86.
    Guo X, Liu J, Xiao B (2013) Bioelectrochemical enhancement of hydrogen and methane production from the anaerobic digestion of sewage sludge in single-chamber membrane-free microbial electrolysis cells. Int J Hydrog Energy 38(3):1342–1347. CrossRefGoogle Scholar
  87. 87.
    Li J, He Z (2016) Development of a dynamic mathematical model for membrane bioelectrochemical reactors with different configurations. Environ Sci Pollut Res 23(4):3897–3906. CrossRefGoogle Scholar
  88. 88.
    Giddings CGS, Nevin KP, Woodward T, Lovley DR, Butler CS (2015) Simplifying microbial electrosynthesis reactor design. Front Microbiol 6:1–6. CrossRefGoogle Scholar
  89. 89.
    Villano M, Monaco G, Aulenta F, Majone M (2011) Electrochemically assisted methane production in a biofilm reactor. J Power Sources 196(22):9467–9472. CrossRefGoogle Scholar
  90. 90.
    Marshall CW, Ross DE, Fichot EB, Norman RS, May HD (2012) Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl Environ Microbiol 78(23):8412–8420. CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Liang P, Huang X, Fan M-Z, Cao X-X, Wang C (2007) Composition and distribution of internal resistance in three types of microbial fuel cells. Appl Microbiol Biotechnol 77(3):551–558. CrossRefPubMedGoogle Scholar
  92. 92.
    Pozo G, Jourdin L, Lu Y, Ledezma P, Keller J, Freguia S (2015) Methanobacterium enables high rate electricity-driven autotrophic sulfate reduction. RSC Adv 5(109):89368–89374. CrossRefGoogle Scholar
  93. 93.
    Sasaki D, Sasaki K, Watanabe A, Morita M, Igarashi Y, Ohmura N (2013) Efficient production of methane from artificial garbage waste by a cylindrical bioelectrochemical reactor containing carbon fiber textiles. AMB Express 3(1):17. CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Carmona-Martínez AA, Trably E, Milferstedt K, Lacroix R, Etcheverry L, Bernet N (2015) Long-term continuous production of H2 in a microbial electrolysis cell (MEC) treating saline wastewater. Water Res 81:149–156. CrossRefPubMedGoogle Scholar
  95. 95.
    Rabaey Clauwaert P, Aelterman P, Verstraete WK (2005) Tubular microbial fuel cell for efficient electricity generation. Environ Sci Technol 39(20):8077–8082CrossRefGoogle Scholar
  96. 96.
    Danzer J, Kerzenmacher S (2016) Filtration-active. Fuel CellGoogle Scholar
  97. 97.
    Rozendal RA, Jeremiasse AW, Hamelers HV, Buisman CJ (2007) Hydrogen production with a microbial biocathode. Environ Sci Technol 42(2):629–634CrossRefGoogle Scholar
  98. 98.
    Shin S-H, Choi Y, Na S-H, Jung S, Kim S (2006) Development of bipolor plate stack type microbial fuel cells. Bull Kor Chem Soc 27(2):281–285CrossRefGoogle Scholar
  99. 99.
    Min B, Logan B (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 38(21):5809–5814. CrossRefPubMedGoogle Scholar
  100. 100.
    Rabaey K, Bützer S, Brown S, Keller J, Rozendal RA (2010) High current generation coupled to caustic production using a lamellar bioelectrochemical system. Environ Sci Technol 44(11):4315–4321. CrossRefPubMedGoogle Scholar
  101. 101.
    Kim BH, Chang IS, Jang JK, Geun CG (2003) Membraneless and mediatorless microbial fuel cell. 1(12):0–4. doi:
  102. 102.
    Gil-Carrera L, Escapa A, Moreno R, Morán A (2013) Reduced energy consumption during low strength domestic wastewater treatment in a semi-pilot tubular microbial electrolysis cell. J Environ Manag 122:1–7. CrossRefGoogle Scholar
  103. 103.
    Siegert M, Yates MD, Call DF, Zhu X, Spormann A, Logan BE (2014) Comparison of nonprecious metal cathode materials for methane production by electromethanogenesis. ACS Sustain Chem Eng 2(4):910–917. CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Zhang T, Nie H, Bain TS et al (2013) Improved cathode materials for microbial electrosynthesis. Energy Environ Sci 6(1):217. CrossRefGoogle Scholar
  105. 105.
    Zhen G, Lu X, Kobayashi T, Kumar G, Xu K (2016) Promoted electromethanosynthesis in a two-chamber microbial electrolysis cells (MECs) containing a hybrid biocathode covered with graphite felt (GF). Chem Eng J 284:1146–1155. CrossRefGoogle Scholar
  106. 106.
    Rabaey K, Lissens G, Siciliano SD, Verstraete W (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 25(18):1531–1535. CrossRefPubMedGoogle Scholar
  107. 107.
    Emde R, Swain A, Schink B (1989) Anaerobic oxidation of glycerol by Escherichia coli in an amperometric poised-potential culture system. Appl Microbiol Biotechnol 32(2):170–175. CrossRefGoogle Scholar
  108. 108.
    Ki D, Popat SC, Torres CI (2016) Reduced overpotentials in microbial electrolysis cells through improved design, operation, and electrochemical characterization. Chem Eng J 287:181–188. CrossRefGoogle Scholar
  109. 109.
    Chae KJ, Choi M, Ajayi FF, Park W, Chang IS, Kim IS (2008) Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy Fuel 22(1):169–176. CrossRefGoogle Scholar
  110. 110.
    Babanova S, Carpenter K, Phadke S et al (2017) The effect of membrane type on the performance of microbial electrosynthesis cells for methane production. J Electrochem Soc 164(3):H3015–H3023. CrossRefGoogle Scholar
  111. 111.
    Zeppilli M, Lai A, Villano M, Majone M (2016) Anion vs cation exchange membrane strongly affect mechanisms and yield of CO2 fixation in a microbial electrolysis cell. Chem Eng J 304:10–19. CrossRefGoogle Scholar
  112. 112.
    Kracke F, Krömer JO (2014) Identifying target processes for microbial electrosynthesis by elementary mode analysis. BMC Bioinformatics 15:410. CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337(6095):686–690. Accessed 12 Apr 2017CrossRefGoogle Scholar
  114. 114.
    Desloover J, Arends JBAA, Hennebel T, Rabay K, Rabaey K (2012) Operational and technical considerations for microbial electrosynthesis. Biochem Soc Trans 40(6):1233–1238. CrossRefPubMedGoogle Scholar
  115. 115.
    Pham TH, Rabaey K, Aelterman P et al (2006) Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 6(3):285–292. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Thomas Krieg
    • 1
  • Joana Madjarov
    • 2
  • Luis F. M. Rosa
    • 3
  • Franziska Enzmann
    • 1
  • Falk Harnisch
    • 3
  • Dirk Holtmann
    • 1
  • Korneel Rabaey
    • 4
    Email author
  1. 1.DECHEMA-Forschungsinstitut – Industrial BiotechnologyFrankfurt am MainGermany
  2. 2.IMTEK – Department of Microsystems EngineeringUniversity of FreiburgFreiburgGermany
  3. 3.Department of Environmental MicrobiologyHelmholtz-Centre for Environmental ResearchLeipzigGermany
  4. 4.Center for Microbial Ecology and Technology (CMET), Ghent UniversityGhentBelgium

Personalised recommendations