Advertisement

Enzyme-Based Electrobiotechnological Synthesis

  • Lisa Marie Schmitz
  • Katrin Rosenthal
  • Stephan LützEmail author
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 167)

Abstract

Oxidoreductases are enzymes with a high potential for organic synthesis, as their selectivity often exceeds comparable chemical syntheses. The biochemical cofactors of these enzymes need regeneration during synthesis. Several regeneration methods are available but the electrochemical approach offers an efficient and quasi mass-free method for providing the required redox equivalents. Electron transfer systems involving direct regeneration of natural and artificial cofactors, indirect electrochemical regeneration via a mediator, and indirect electroenzymatic cofactor regeneration via enzyme and mediator have been investigated. This chapter gives an overview of electroenzymatic syntheses with oxidoreductases, structured by the enzyme subclass and their usage of cofactors for electron relay. Particular attention is given to the productivity of electroenzymatic biotransformation processes. Because most electroenzymatic syntheses suffer from low productivity, we discuss reaction engineering concepts to overcome the main limiting factors, with a focus on media conductivity optimization, approaches to prevent enzyme inactivation, and the application of advanced cell designs.

Graphical Abstract

Keywords

Cofactor regeneration Electrochemistry Electron mediator Enzyme catalysis Oxidoreductases Reactor design Rhodium complex 

References

  1. 1.
    Das P, Das M, Chinnadayyala SR, Singha IM, Goswami P (2016) Recent advances on developing 3rd generation enzyme electrode for biosensor applications. Biosens Bioelectron 79:386–397PubMedGoogle Scholar
  2. 2.
    Yu EH, Scott K (2010) Enzymatic biofuel cells-fabrication of enzyme electrodes. Energies 3(1):23–42Google Scholar
  3. 3.
    Pankratov D, Conzuelo F, Pinyou P, Alsaoub S, Schuhmann W, Shleev S (2016) A nernstian biosupercapacitor. Angew Chem 55(49):15434–15438Google Scholar
  4. 4.
    Sode K, Yamazaki T, Lee I, Hanashi T, Tsugawa W (2016) BioCapacitor: a novel principle for biosensors. Biosens Bioelectron 76:20–28PubMedGoogle Scholar
  5. 5.
    Steckhan E (1994) Electroenzymatic synthesis. Top Curr Chem 170:83–111Google Scholar
  6. 6.
    Steckhan E, Arns T, Heineman WR, Hilt G, Hoormann D, Jorissen J, Kroner L, Lewall B, Putter H (2001) Environmental protection and economization of resources by electroorganic and electroenzymatic syntheses. Chemosphere 43(1):63–73PubMedGoogle Scholar
  7. 7.
    Kohlmann C, Lütz S (2015) Electroenzymatic synthesis. In: Hammerich O (ed) Organic electrochemistry5th edn. CRC Press, New York, pp 1511–1542Google Scholar
  8. 8.
    Paul CE, Hollmann F (2016) A survey of synthetic nicotinamide cofactors in enzymatic processes. Appl Microbiol Biotechnol 100(11):4773–4778PubMedPubMedCentralGoogle Scholar
  9. 9.
    Wandrey C, Liese A, Kihumbu D (2000) Industrial biocatalysis: past, present, and future. Org Process Res Dev 4(4):286–290Google Scholar
  10. 10.
    Hummel W, Kula MR (1989) Dehydrogenases for the synthesis of chiral compounds. Eur J Biochem 184(1):1–13PubMedGoogle Scholar
  11. 11.
    Wichmann R, Wandrey C, Buckmann AF, Kula MR (1981) Continuous enzymatic transformation in an enzyme membrane reactor with simultaneous NAD(H) regeneration. Biotechnol Bioeng 23(12):2789–2802Google Scholar
  12. 12.
    van der Donk WA, Zhao HM (2003) Recent developments in pyridine nucleotide regeneration. Curr Opin Biotechnol 14(4):421–426PubMedGoogle Scholar
  13. 13.
    Hollmann F, Schmid A (2004) Electrochemical regeneration of oxidoreductases for cell-free biocatalytic redox reactions. Biocatal Biotransform 22(2):63–88Google Scholar
  14. 14.
    Uppada V, Bhaduri S, Noronha SB (2014) Cofactor regeneration – an important aspect of biocatalysis. Curr Sci 106(7):946–957Google Scholar
  15. 15.
    Tishkov VI, Popov VO (2004) Catalytic mechanism and application of formate dehydrogenase. Biochem Mosc 69(11):1252–1267Google Scholar
  16. 16.
    Chenault HK, Simon ES, Whitesides GM (1988) Cofactor regeneration for enzyme-catalysed synthesis. Biotechnol Genet Eng Rev 6(1):221–270PubMedGoogle Scholar
  17. 17.
    Nagesetti A, Rodzinski A, Stimphil E, Khanal TSC, Wang P, Guduru R, Liang P, Agoulnik I, Horstmyer J, Khizroev S (2017) Multiferroic coreshell magnetoelectric nanoparticles as NMR sensitive nanoprobes for cancer cell detection. Sci Rep 7(1):1610PubMedPubMedCentralGoogle Scholar
  18. 18.
    Ruinatscha R, Höllrigl V, Otto K, Schmid A (2006) Productivity of selective electroenzymatic reduction and oxidation reactions: theoretical and practical considerations. Adv Synth Catal 348(15):2015–2026Google Scholar
  19. 19.
    Wandrey C (2004) Biochemical reaction engineering for redox reactions. Chem Rec 4(4):254–265PubMedGoogle Scholar
  20. 20.
    Grieshaber D, MacKenzie R, Voros J, Reimhult E (2008) Electrochemical biosensors – sensor principles and architectures. Sensors 8(3):1400–1458PubMedGoogle Scholar
  21. 21.
    Steckhan E (1986) Indirect electroorganic syntheses – a modern chapter of organic electrochemistry. Angew Chem 25(8):683–701Google Scholar
  22. 22.
    Goldberg K, Schroer K, Lütz S, Liese A (2007) Biocatalytic ketone reduction – a powerful tool for the production of chiral alcohols, part I: processes with isolated enzymes. Appl Microbiol Biotechnol 76(2):237–248PubMedGoogle Scholar
  23. 23.
    Bonnefoy J, Moiroux J, Laval JM, Bourdillon C (1988) Electrochemical regeneration of NAD+ – a new evaluation of its actual yield. J Chem Soc Faraday Trans 84:941–950Google Scholar
  24. 24.
    Manjon A, Obon JM, Casanova P, Fernandez VM, Ilborra JL (2002) Increased activity of glucose dehydrogenase co-immobilized with a redox mediator in a bioreactor with electrochemical NAD+ regeneration. Biotechnol Lett 24(15):1227–1232Google Scholar
  25. 25.
    Obon JM, Casanova P, Manjon A, Fernandez VM, Iborra JL (1997) Stabilization of glucose dehydrogenase with polyethyleneimine in an electrochemical reactor with NAD(P)+ regeneration. Biotechnol Prog 13(5):557–561Google Scholar
  26. 26.
    Hilt G, Steckhan E (1993) Transition-metal complexes of 1,10-phenanthroline-5,6-dione as efficient mediators for the regeneration of NAD+ in enzymatic-synthesis. J Chem Soc Chem Commun 22:1706–1707Google Scholar
  27. 27.
    Hilt G, Lewall B, Montero G, Utley JHP, Steckhan E (1997) Efficient in situ redox catalytic NAD(P)+ regeneration in enzymatic synthesis using transition-metal complexes of 1,10-phenanthroline-5,6-dione and its N-monomethylated derivative as catalysts. Liebigs Ann Recl 11:2289–2296Google Scholar
  28. 28.
    Komoschinski J, Steckhan E (1988) Efficient indirect electrochemical in situ regeneration of NAD+ and NADP+ for enzymatic oxidations using iron bipyridine and phenanthroline complexes as redox catalysts. Tetrahedron Lett 29(27):3299–3300Google Scholar
  29. 29.
    Itoh S, Fukushima H, Komatsu M, Ohshiro Y (1992) Heterocyclic ortho-quinones – mediator for electrochemical oxidation of NADH. Chem Lett 8:1583–1586Google Scholar
  30. 30.
    Kashiwagi Y, Osa T (1993) Electrocatalytic oxidation of NADH on thin poly(acrylic acid) film coated graphite felt electrode coimmobilizing ferrocene and diaphorase. Chem Lett 4:677–680Google Scholar
  31. 31.
    Schulz M, Leichmann H, Gunther H, Simon H (1995) Electromicrobial regeneration of pyridine-nucleotides and other preparative redox transformations with Clostridium thermoaceticum. Appl Microbiol Biotechnol 42(6):916–922Google Scholar
  32. 32.
    Schroeder I, Steckhan E, Liese A (2003) In situ NAD+ regeneration using 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) as an electron transfer mediator. J Electroanal Chem 541:109–115Google Scholar
  33. 33.
    Kochius S, Park JB, Ley C, Konst P, Hollmann F, Schrader J, Holtmann D (2014) Electrochemical regeneration of oxidised nicotinamide cofactors in a scalable reactor. J Mol Catal B Enzym 103:94–99Google Scholar
  34. 34.
    Degenring D, Schroder I, Wandrey C, Liese A, Greiner L (2004) Resolution of 1,2-diols by enzyme-catalyzed oxidation with anodic, mediated cofactor regeneration in the extractive membrane reactor: gaining insight by adaptive simulation. Org Process Res Dev 8(2):213–218Google Scholar
  35. 35.
    Wulf H, Perzborn M, Sievers G, Scholz F, Bornscheuer UT (2012) Kinetic resolution of glyceraldehyde using an aldehyde dehydrogenase from Deinococcus geothermalis DSM 11300 combined with electrochemical cofactor recycling. J Mol Catal B Enzym 74(1-2):144–150Google Scholar
  36. 36.
    Baik SH, Kang C, Jeon IC, Yun SE (1999) Direct electrochemical regeneration of NADH from NAD+ using cholesterol-modified gold amalgam electrode. Biotechnol Tech 13(1):1–5Google Scholar
  37. 37.
    Siu E, Won K, Park CB (2007) Electrochemical regeneration of NADH using conductive vanadia-silica xerogels. Biotechnol Prog 23(1):293–296PubMedGoogle Scholar
  38. 38.
    Kashiwagi Y, Yanagisawa Y, Shibayama N, Nakahara K, Kurashima F, Anzai J, Osa T (1997) Preparative, electroenzymatic reduction of ketones on an all components-immobilized graphite felt electrode. Electrochim Acta 42(13–14):2267–2270Google Scholar
  39. 39.
    Kang YW, Kang C, Hong JS, Yun SE (2001) Optimization of the mediated electrocatalytic reduction of NAD+ by cyclic voltammetry and construction of electrochemically driven enzyme bioreactor. Biotechnol Lett 23(8):599–604Google Scholar
  40. 40.
    Kim MH, Yun SE (2004) Construction of an electro-enzymatic bioreactor for the production of (R)-mandelate from benzoylformate. Biotechnol Lett 26(1):21–26PubMedGoogle Scholar
  41. 41.
    Delecouls-Servat K, Basseguy R, Bergel A (2002) Designing membrane electrochemical reactors for oxidoreductase-catalysed synthesis. Bioelectrochemistry 55(1–2):93–95PubMedGoogle Scholar
  42. 42.
    DiCosimo R, Wong CH, Daniels L, Whitesides GM (1981) Enzyme-catalyzed organic-synthesis – electrochemical regeneration of NAD(P)H from NAD(P) using methyl viologen and flavoenzymes. J Org Chem 46(22):4622–4623Google Scholar
  43. 43.
    Cantet J, Bergel A, Comtat M (1996) Coupling of the electroenzymatic reduction of NAD+ with a synthesis reaction. Enzyme Microb Technol 18(1):72–79Google Scholar
  44. 44.
    Cantet J, Bergel A, Comtat M (1992) Bioelectrocatalysis of NAD+ reduction. Bioelectrochem Bioenergy 27(3):475–486Google Scholar
  45. 45.
    Yuan R, Watanabe S, Kuwabata S, Yoneyama H (1997) Asymmetric electroreduction of ketone and aldehyde derivatives to the corresponding alcohols using alcohol dehydrogenase as an electrocatalyst. J Org Chem 62(8):2494–2499PubMedGoogle Scholar
  46. 46.
    Hollmann F, Lin PC, Witholt B, Schmid A (2003) Stereospecific biocatalytic epoxidation: the first example of direct regeneration of a FAD-dependent monooxygenase for catalysis. J Am Chem Soc 125(27):8209–8217PubMedGoogle Scholar
  47. 47.
    Wienkamp R, Steckhan E (1982) Indirect electrochemical regeneration of NADH by a bipyridinerhodium(I) complex as electron-transfer agent. Angew Chem 21(10):782–783Google Scholar
  48. 48.
    Ruppert R, Herrmann S, Steckhan E (1987) Efficient indirect electrochemical in situ regeneration of NADH – electrochemically driven enzymatic reduction of pyruvate catalyzed by D-LDH. Tetrahedron Lett 28(52):6583–6586Google Scholar
  49. 49.
    Delecouls-Servat K, Basseguy R, Bergel A (2002) Membrane electrochemical reactor (MER): application to NADH regeneration for ADH-catalysed synthesis. Chem Eng Sci 57(21):4633–4642Google Scholar
  50. 50.
    Hildebrand F, Lütz S (2007) Electroenzymatic synthesis of chiral alcohols in an aqueous-organic two-phase system. Tetrahedron-Asymmetry 18(10):1187–1193Google Scholar
  51. 51.
    Hoellrigl V, Otto K, Schmid A (2007) Electroenzymatic asymmetric reduction of rac-3-methylcyclohexanone to (1S,3S)-3-methylcyclohexanol in organic/aqueous media catalyzed by a thermophilic alcohol dehydrogenase. Adv Synth Catal 349(8-9):1337–1340Google Scholar
  52. 52.
    Hildebrand F, Lütz S (2009) Stable electroenzymatic processes by catalyst separation. Chem Eur J 15(20):4998–5001PubMedGoogle Scholar
  53. 53.
    Toogood HS, Knaus T, Scrutton NS (2014) Alternative hydride sources for ene-reductases: current trends. ChemCatChem 6(4):951–954Google Scholar
  54. 54.
    Simon H, Gunther H, Bader J, Tischer W (1981) Electro-enzymatic and electro-microbial stereospecific reductions. Angew Chem 20(10):861–863Google Scholar
  55. 55.
    Thanos ICG, Simon H (1987) Electro-enzymatic viologen-mediated stereospecific reduction of 2-enoates with free and immobilized enoate reductase on cellulose filters or modified carbon electrodes. J Biotechnol 6(1):13–29Google Scholar
  56. 56.
    Fisher K, Mohr S, Mansell D, Goddard NJ, Fielden PR, Scrutton NS (2013) Electro-enzymatic viologen-mediated substrate reduction using pentaerythritol tetranitrate reductase and a parallel, segmented fluid flow system. Catal Sci Technol 3(6):1505–1511Google Scholar
  57. 57.
    Tosstorff A, Kroner C, Opperman DJ, Hollmann F, Holtmann D (2017) Towards electroenzymatic processes involving old yellow enzymes and mediated cofactor regeneration. Eng Life Sci 1:71–76Google Scholar
  58. 58.
    Trost E-M, Fischer L (2002) Minimization of by-product formation during amino acid oxidase catalyzed racemate resolution of amino acids. J Mol Catal B Enzym 19-20:189–195Google Scholar
  59. 59.
    Butó S, Pollegioni L, D’Angiuro L, Pilone MS (1994) Evaluation of D-amino-acid oxidase from Rhodotorula gracilis for the production of α-keto acids: a reactor system. Biotechnol Bioeng 44:1288–1294PubMedGoogle Scholar
  60. 60.
    Frede M, Steckhan E (1991) Continuous electrochemical activation of flavoenzymes using polyethyleneglycol-bound ferrocenes as mediators – a model for the application of oxidoreductases as oxidation catalysts in organic synthesis. Tetrahedron Lett 32(38):5063–5066Google Scholar
  61. 61.
    Cass AE, Davis G, Francis GD, Hill HA, Aston WJ, Higgins IJ, Plotkin EV, Scott LD, Turner AP (1984) Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal Chem 56(4):667–671PubMedGoogle Scholar
  62. 62.
    Hill HAO, Oliver BN, Page DJ, Hopper DJ (1985) The enzyme-catalyzed electrochemical conversion of para-cresol into para-hydroxybenzaldehyde. J Chem Soc Chem Commun 21:1469–1471Google Scholar
  63. 63.
    Brielbeck B, Frede M, Steckhan E (1994) Continuous electroenzymatic synthesis employing the electrochemical enzyme membrane reactor. Biocatalysis 10(1-4):49–64Google Scholar
  64. 64.
    Petersen A, Steckhan E (1999) Continuous indirect electrochemical regeneration of galactose oxidase. Bioorg Med Chem 7(10):2203–2208PubMedGoogle Scholar
  65. 65.
    Kohlmann C, Greiner L, Leitner W, Wandrey C, Lütz S (2009) Ionic liquids as performance additives for electroenzymatic syntheses. Chem Eur J 15(43):11692–11700PubMedGoogle Scholar
  66. 66.
    Kawabata S, Iwata N, Yoneyama H (2000) Asymmetric electrosynthesis of amino acid using an electrode modified with amino acid oxidase and electron mediator. Chem Lett 2:110–111Google Scholar
  67. 67.
    Jeon JS, Shin IH, Sang BI, Park DH (2005) Electrochemical regeneration of FAD by catalytic electrode without electron mediator and biochemical reducing power. J Microbiol Biotechnol 15(2):281–286Google Scholar
  68. 68.
    Sono M, Roach MP, Coulter ED, Dawson JH (1996) Heme-containing oxygenases. Chem Rev 96(7):2841–2888PubMedGoogle Scholar
  69. 69.
    Cirino PC, Arnold FH (2002) Protein engineering of oxygenases for biocatalysis. Curr Opin Chem Biol 6(2):130–135PubMedGoogle Scholar
  70. 70.
    Faber K (2000) Biotransformations in organic chemistry, 4th edn. Springer, New York (5th edn available)Google Scholar
  71. 71.
    Creveling CR, Daly JW, Witkop B, Undenfriend S (1962) Substrates and inhibitors of dopamine-beta-oxidase. Biochim Biophys Acta 64:125–134PubMedGoogle Scholar
  72. 72.
    Girhard M, Bakkes PJ, Mahmoud O, Urlacher VB (2005) P450 biotechnology. In: de Montellano O (ed) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Kluwer Academic/Plenum, New York, pp 451–520Google Scholar
  73. 73.
    Kaufman S (1963) The structure of the phenylalanine-hydroxylation cofactor. PNAS 50:1085–1093PubMedGoogle Scholar
  74. 74.
    Suske WA, Held M, Schmid A, Fleischmann T, Wubbolts MG, Kohler HPE (1997) Purification and characterization of 2-hydroxybiphenyl 3-monooxygenase, a novel NADH-dependent, FAD-containing aromatic hydroxylase from Pseudomonas azelaica HBP1. J Biol Chem 272(39):24257–24265PubMedGoogle Scholar
  75. 75.
    Faulkner KM, Shet MS, Fisher CW, Estabrook RW (1995) Electrocatalytically driven omega-hydroxylation of fatty-acids using cytochrome-P450 4A1. PNAS 92(17):7705–7709PubMedGoogle Scholar
  76. 76.
    Estabrook RW, Faulkner KM, Shet MS, Fisher CW (1996) Application of electrochemistry for P450-catalyzed reactions. Methods Enzymol 272:44–51PubMedGoogle Scholar
  77. 77.
    Udit AK, Arnold FH, Gray HB (2004) Cobaltocene-mediated catalytic monooxygenation using holo and heme domain cytochrome P450BM3. J Inorg Biochem 98(9):1547–1550PubMedGoogle Scholar
  78. 78.
    Çekiç SZ, Holtmann D, Güven G, Mangold K-M, Schwaneberg U, Schrader J (2010) Mediated electron transfer with P450cin. Electrochem Commun 12(11):1547–1550Google Scholar
  79. 79.
    Hollmann F, Schmid A, Steckhan E (2001) The first synthetic application of a monooxygenase employing indirect electrochemical NADH regeneration. Angew Chem Int Ed 40(1):169–171Google Scholar
  80. 80.
    Hollmann F, Hofstetter K, Habicher T, Hauer B, Schmid A (2005) Direct electrochemical regeneration of monooxygenase subunits for biocatalytic asymmetric epoxidation. J Am Chem Soc 127(18):6540–6541PubMedGoogle Scholar
  81. 81.
    Ruinatscha R, Buehler K, Schmid A (2014) Development of a high performance electrochemical cofactor regeneration module and its application to the continuous reduction of FAD. J Mol Catal B Enzym 103:100–105Google Scholar
  82. 82.
    Tosstorff A, Dennig A, Ruff AJ, Schwaneberg U, Sieber V, Mangold K-M, Schrader J, Holtmann D (2014) Mediated electron transfer with monooxygenases—insight in interactions between reduced mediators and the co-substrate oxygen. J Mol Catal B Enzym 108:51–58Google Scholar
  83. 83.
    Ströhle FW, Cekic SZ, Magnusson AO, Schwaneberg U, Roccatano D, Schrader J, Holtmann D (2013) A computational protocol to predict suitable redox mediators for substitution of NAD(P)H in P450 monooxygenases. J Mol Catal B Enzym 88:47–51Google Scholar
  84. 84.
    Ley C, Schewe H, Ströhle FW, Ruff AJ, Schwaneberg U, Schrader J, Holtmann D (2013) Coupling of electrochemical and optical measurements in a microtiter plate for the fast development of electro enzymatic processes with P450s. J Mol Catal B Enzym 92:71–78Google Scholar
  85. 85.
    Seelbach K, van Deurzen MPJ, van Rantwijk F, Sheldon RA, Kragl U (1997) Improvement of the total turnover number and space-time yield for chloroperoxidase catalyzed oxidation. Biotechnol Bioeng 55(2):283–288PubMedGoogle Scholar
  86. 86.
    van de Velde F, van Rantwijk F, Sheldon RA (1999) Selective oxidations with molecular oxygen, catalyzed by chloroperoxidase in the presence of a reductant. J Mol Catal B Enzym 6(5):453–461Google Scholar
  87. 87.
    Pletcher D (1999) Indirect oxidations using electrogenerated hydrogen peroxide. Acta Chem Scand 53(10):745–750Google Scholar
  88. 88.
    Chen JK, Nobe K (1993) Oxidation of dimethylaniline by horseradish-peroxidase and electrogenerated peroxide. J Electrochem Soc 140(2):299–303Google Scholar
  89. 89.
    Lee K, Moon SH (2003) Electroenzymatic oxidation of veratryl alcohol by lignin peroxidase. J Biotechnol 102(3):261–268PubMedGoogle Scholar
  90. 90.
    Laane C, Weyland A, Franssen M (1986) Bioelectrosynthesis of halogenated compounds using chloroperoxidase. Enzyme Microb Technol 8(6):345–348Google Scholar
  91. 91.
    Dembitsky VM (2003) Oxidation, epoxidation and sulfoxidation reactions catalysed by haloperoxidases. Tetrahedron 59(26):4701–4720Google Scholar
  92. 92.
    Lütz S, Steckhan E, Liese A (2004) First asymmetric electroenzymatic oxidation catalyzed by a peroxidase. Electrochem Commun 6(6):583–587Google Scholar
  93. 93.
    Lütz S, Vuorilehto K, Liese A (2007) Process development for the electroenzymatic synthesis of (R)-methylphenylsulfoxide by use of a 3-dimensional electrode. Biotechnol Bioeng 98:525–534PubMedGoogle Scholar
  94. 94.
    Kohlmann C, Lütz S (2006) Electroenzymatic synthesis of chiral sulfoxides. Eng Life Sci 6(2):170–174Google Scholar
  95. 95.
    Krieg T, Huttmann S, Mangold KM, Schrader J, Holtmann D (2011) Gas diffusion electrode as novel reaction system for an electro-enzymatic process with chloroperoxidase. Green Chem 13(10):2686–2689Google Scholar
  96. 96.
    Holtmann D, Krieg T, Getrey L, Schrader J (2014) Electroenzymatic process to overcome enzyme instabilities. Catal Commun 51:82–85Google Scholar
  97. 97.
    Horst AEW, Bormann S, Meyer J, Steinhagen M, Ludwig R, Drews A, Ansorge-Schumacher M, Holtmann D (2016) Electro-enzymatic hydroxylation of ethylbenzene by the evolved unspecific peroxygenase of Agrocybe aegerita. J Mol Catal B Enzym.  https://doi.org/10.1016/j.molcatb.2016.12.008 Google Scholar
  98. 98.
    Slusarczyk H, Felber S, Kula MR, Pohl M (2000) Stabilization of NAD-dependent formate dehydrogenase from Candida boidinii by site-directed mutagenesis of cysteine residues. Eur J Biochem 267(5):1280–1289PubMedGoogle Scholar
  99. 99.
    Lutz J, Hollmann F, Ho TV, Schnyder A, Fish RH, Schmid A (2004) Bioorganometallic chemistry: biocatalytic oxidation reactions with biomimetic NAD+/NADH co-factors and [Cp*Rh(bpy)H]+ for selective organic synthesis. J Organomet Chem 689(25):4783–4790Google Scholar
  100. 100.
    Steckhan E, Herrmann S, Ruppert R, Dietz E, Frede M, Spika E (1991) Analytical study of a series of substituted (2,2′-bipyridyl)(pentamethylcyclopentadienyl)rhodium and iridium complexes with regard to their effectiveness as redox catalysts for the indirect electrochemical and chemical-reduction of NAD(P)+. Organometallics 10(5):1568–1577Google Scholar
  101. 101.
    Höllrigl V, Otto K, Schmid A (2007) Electroenzymatic asymmetric reduction of rac-3-methylcyclohexanone to (1S,3S)-3-methylcyclohexanol in organic/aqueous media catalyzed by a thermophilic alcohol dehydrogenase. Adv Synth Catal 349(8–9):1337–1340Google Scholar
  102. 102.
    Speiser B (1981) Elektroanalytische methoden II: cyclische voltammetrie. Chemie Unserer Zeit 15(2):62–67Google Scholar
  103. 103.
    Hamann CH, Vielstich W (1998) Elektrochemie, 3rd edn. Wiley, WeinheimGoogle Scholar
  104. 104.
    Lütz S, Rao N, Wandrey C (2006) Membranes in Biotechnology. Chem Eng Technol 29:1404–1415Google Scholar
  105. 105.
    Dreisbach C, Wischnewski G, Kragl U, Wandrey C (1995) Changes of enantioselectivity with the substrate ratio for the addition of diethylzinc to aldehydes using a catalyst coupled to a soluble polymer. J Chem Soc 7:875–878Google Scholar
  106. 106.
    Greiner L, Laue S, Liese A, Wandrey C (2006) Continuous homogeneous asymmetric transfer hydrogenation of ketones: lessons from kinetics. Chem Eur J 12(6):1818–1823PubMedGoogle Scholar
  107. 107.
    Kragl U, Dreisbach C (1996) Kontinuierliche asymmetrische synthese in einem membranreaktor. Angew Chem 108(6):684–685Google Scholar
  108. 108.
    Kragl U, Dwars T (2002) The development of new methods for the recycling of chiral catalysts. Trends Biotechnol 20(1):45–45Google Scholar
  109. 109.
    Liese A (2003) Biological principles applied to technical asymmetric catalysis. Habilitation, Rheinische Friedrich-Wilhelms-Universität, BonnGoogle Scholar
  110. 110.
    Rissom S, Beliczey J, Giffels G, Kragl U, Wandrey C (1999) Asymmetric reduction of acetophenone in membrane reactors: comparison of oxazaborolidine and alcohol dehydrogenase catalysed processes. Tetrahedron Asymmetry 10(5):923–928Google Scholar
  111. 111.
    Woltinger J, Bommarius AS, Drauz K, Wandrey C (2001) The chemzyme membrane reactor in the fine chemicals industry. Org Process Res Dev 5(3):241–248Google Scholar
  112. 112.
    Woltinger J, Drauz K, Bommarius AS (2001) The membrane reactor in the fine chemicals industry. Appl Catal A 221(1-2):171–185Google Scholar
  113. 113.
    Vuorilehto K, Lütz S, Wandrey C (2004) Indirect electrochemical reduction of nicotinamide coenzymes. Bioelectrochemistry 65(1):1–7PubMedGoogle Scholar
  114. 114.
    van Deurzen MPJ, Seelbach K, van Rantwijk F, Kragl U, Sheldon RA (1997) Chloroperoxidase: use of a hydrogen peroxide-stat for controlling reactions and improving enzyme performance. Biocatal Biotransform 15(1):1–16Google Scholar
  115. 115.
    Hollmann F, Witholt B, Schmid A (2002) [Cp*Rh(bpy)(H2O)]2+: a versatile tool for efficient and non-enzymatic regeneration of nicotinamide and flavin coenzymes. J Mol Catal B Enzym 19:167–176Google Scholar
  116. 116.
    Steckhan E, Frede M, Herrmann S, Ruppert R, Spika E, Dietz E (1992) Enzymatische synthesen durch indirekte elektrochemische prozesse. DECHEMA-monographien, vol 125. VCH, Weinheim, pp 723–753Google Scholar
  117. 117.
    Greiner D, Kohlmann C, Leitner W, Lütz S, Wandrey C (2009) Procedure for the conversion of substrates e.g. organic sulfides, ketones and amino acids, to products by a combined electrochemical and catalytic process in a reaction medium containing ionic liquid. Patent DE102007044379 A1, 26 March 2009Google Scholar
  118. 118.
    Krieg T, Sydow A, Schroder U, Schrader J, Holtmann D (2014) Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends Biotechnol 32(12):645–655PubMedGoogle Scholar
  119. 119.
    Min K, Park DH, Yoo YJ (2010) Electroenzymatic synthesis of L-DOPA. J Biotechnol 146(1–2):40–44PubMedGoogle Scholar
  120. 120.
    Varnicic M, Vidakovic-Koch T, Sundmacher K (2015) Gluconic acid synthesis in an electroenzymatic reactor. Electrochim Acta 176:1523–1523Google Scholar
  121. 121.
    Hildebrand F, Kohlmann C, Franz A, Lütz S (2008) Synthesis, characterization and application of new rhodium complexes for indirect electrochemical cofactor regeneration. Adv Synth Catal 350(6):909–918Google Scholar
  122. 122.
    Hofstetter K, Lutz J, Lang I, Witholt B, Schmid A (2004) Coupling of biocatalytic asymmetric epoxidation with NADH regeneration in organic-aqueous emulsions. Angew Chem 43(16):2163–2166Google Scholar
  123. 123.
    Ruinatscha R, Dusny C, Buehler K, Schmid A (2009) Productive asymmetric styrene epoxidation based on a next generation electroenzymatic methodology. Adv Synth Catal 351(14–15):2505–2515Google Scholar
  124. 124.
    Schmid A, Vereyken I, Held M, Witholt B (2001) Preparative regio- and chemoselective functionalization of hydrocarbons catalyzed by cell free preparations of 2-hydroxybiphenyl 3-monooxygenase. J Mol Catal B Enzym 11(4-6):455–462Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Lisa Marie Schmitz
    • 1
  • Katrin Rosenthal
    • 1
  • Stephan Lütz
    • 1
    Email author
  1. 1.Department of Biochemical and Chemical EngineeringTU Dortmund UniversityDortmundGermany

Personalised recommendations