Advertisement

High-Throughput Process Development for Biopharmaceuticals

  • Abhinav A. Shukla
  • Shahid Rameez
  • Leslie S. Wolfe
  • Nathan Oien
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 165)

Abstract

The ability to conduct multiple experiments in parallel significantly reduces the time that it takes to develop a manufacturing process for a biopharmaceutical. This is particularly significant before clinical entry, because process development and manufacturing are on the “critical path” for a drug candidate to enter clinical development. High-throughput process development (HTPD) methodologies can be similarly impactful during late-stage development, both for developing the final commercial process as well as for process characterization and scale-down validation activities that form a key component of the licensure filing package. This review examines the current state of the art for HTPD methodologies as they apply to cell culture, downstream purification, and analytical techniques. In addition, we provide a vision of how HTPD activities across all of these spaces can integrate to create a rapid process development engine that can accelerate biopharmaceutical drug development.

Graphical Abstract

Keywords

ambr Caliper High throughput Octet Process characterization Process development Rapid screening and development Tecan 

References

  1. 1.
    Shukla A, Hubbard B, Tressel T, Guhan S, Low D (2007) Downstream processing of monoclonal antibodies – application of platform approaches. J Chromatogr B 848:28–39CrossRefGoogle Scholar
  2. 2.
    Shukla A, Thommes J (2010) Advances in large-scale production of monoclonal antibodies and related proteins. Trends Biotechnol 28(5):253–261CrossRefGoogle Scholar
  3. 3.
    Kelley B (2009) Industrialization of mAb production technology: the biotechnology industry at a crossroads. MAbs 1(5):443–452CrossRefGoogle Scholar
  4. 4.
    Ecker D, Jones SD, Levine H (2015) The therapeutic monoclonal antibody market. MAbs 7(1):9–14CrossRefGoogle Scholar
  5. 5.
    Reichert J (2015) Antibodies to watch in 2015. MAbs 7(1):1–8CrossRefGoogle Scholar
  6. 6.
    Rathore A, Winkle H (2006) Quality by design for biopharmaceuticals. Nature 27:26–34Google Scholar
  7. 7.
    Jiang C, Flansburg L, Ghose S, Jorjorian P, Shukla A (2010) Defining process design space for a hydrophobic interaction chromatography purification step: application of QbD principles. Biotechnol Bioeng 107(6):989–1001CrossRefGoogle Scholar
  8. 8.
    Abu-Absi S, Yang L, Thompson P, Jiang C, Kandula S, Schilling B, Shukla A (2010) Defining process design space for monoclonal antibody cell culture. Biotechnol Bioeng 106(6):894–905CrossRefGoogle Scholar
  9. 9.
    Legmann R, Schreyer H, Combs R, McCormick E, Russo A, Rodgers S (2009) A predictive high throughput scale-down model of mAb production in CHO cells. Biotechnol Bioeng 104(6):1107–1120CrossRefGoogle Scholar
  10. 10.
    Lamping S, Zhang H, Allen B, Ayazi Shamlou P (2003) Design of a prototype miniature bioreactor for high throughput automated processing. Chem Eng Sci 58:747–758CrossRefGoogle Scholar
  11. 11.
    Isett K, George H, Herber W, Amanullah A (2007) Twenty four well plate miniature bioreactor high throughput system: assessment for microbial cultivation. Biotechnol Bioeng 98:1017–1028CrossRefGoogle Scholar
  12. 12.
    De Jesus M, Girard P, Bourgeois M, Baumgartner G, Jacko B, Amstutz H, Wurm F (2004) TubeSpin satellites: a fast track approach for process development with animal cells using shaking technology. Biochem Eng J 17:217–223CrossRefGoogle Scholar
  13. 13.
    Janakiraman V, Kwiatkowski C, Kshirsagar R, Ryll T, Huang Y (2015) Application of high throughput mini-bioreactor system for systematic scale-down modeling, process characterization and control strategy development. Biotechnol Prog 31:1623–1632CrossRefGoogle Scholar
  14. 14.
    Rameez S, Mostafa S, Miller C, Shukla A (2014) High-throughput miniaturized bioreactors for cell culture process development – reproducibility, scalability and control. Biotechnol Prog 30(3):718–727CrossRefGoogle Scholar
  15. 15.
    Hsu WT, Aulakh RP, Traul DL, Yuk IH (2012) Advanced microscale bioreactor system: a representative scale-down model for bench-top bioreactors. Cytotechnology 64:667–678CrossRefGoogle Scholar
  16. 16.
    Lewis G, Lugg R, Lee K, Wales R (2010) Novel automated microscale bioreactor technology: a qualitative and quantitative mimic for early process development. Bioprocess J 9:22–25CrossRefGoogle Scholar
  17. 17.
    Moses S, Manahan M, Ambrogelly A, Ling WW (2012) Assessment of AMBR™ as a model for high-throughput cell culture process development strategy. Adv Biosci Biotechnol 3:918–927CrossRefGoogle Scholar
  18. 18.
    Neinow AW, Rielly CD, Brosnan K, Barg K, Lee K, Coopman K, Hewitt CJ (2013) The physical characterisation of a microscale parallel bioreactor platform with an industrial CHO cell line expressing an IgG4. Biochem Eng J 76:25–36CrossRefGoogle Scholar
  19. 19.
    Tai M, Ly A, Leung I, Nayar G (2015) Efficient high-throughput biological process characterization: definitive screening design with the ambr250 bioreactor system. Biotechnol Prog 31:1338–1395CrossRefGoogle Scholar
  20. 20.
    Xu P, Clark C, Ryder T, Sparks C, Zhou J, Wang M, Russel R, Scott C (2016) Characterization of TAP ambr 250 disposable bioreactors, as a reliable scale-down model for biologics process development. Biotechnol Prog 33:478–479CrossRefGoogle Scholar
  21. 21.
    Bareither R, Bargh N, Oakeshott R, Watts K, Pollard D (2013) Automated disposable small scale reactor for high throughput bioprocess development: a proof of concept study. Biotechnol Prog 110:3126–3138Google Scholar
  22. 22.
    Micheletti M, Lye GJ (2006) Microscale bioprocess optimisation. Curr Opin Biotechnol 17(6):611–618CrossRefGoogle Scholar
  23. 23.
    Vallejos JR, Kostov Y, Ram A, French JA, Marten MR, Rao G (2006) Optical analysis of liquid mixing in a minibioreactor. Biotechnol Bioeng 93(5):906–911CrossRefGoogle Scholar
  24. 24.
    Coffman JL, Kramarczyk JF, Kelley BD (2008) High-throughput screening of chromatographic separations: I. Method development and column modeling. Biotechnol Bioeng 100:605–618CrossRefGoogle Scholar
  25. 25.
    Kelley BD (2008) High-throughput screening of chromatographic separations: IV. Ion-Exch Biotechnol Bioeng 100:950–963CrossRefGoogle Scholar
  26. 26.
    Kramarczyk JF, Kelley BD, Coffman JL (2008) High-throughput screening of chromatographic separations: II. Hydrophobic interaction. Biotechnol Bioeng 100:707–720CrossRefGoogle Scholar
  27. 27.
    Petroff MG, Bao H, Welsh JP, van Beuningen-de Vaan M, Pollard JM, Roush DJ, Kandula S, Machielsen P, Tugcu N, Linden TO (2016) High throughput chromatography strategies for potential use in the formal process characterization of a monoclonal antibody. Biotechnol Bioeng 113:1273–1283CrossRefGoogle Scholar
  28. 28.
    Bhambure R, Kumar K, Rathore A (2011a) High-throughput process development for biopharmaceutifcal drug substances. Trends Biotechnol 29(3):127–135CrossRefGoogle Scholar
  29. 29.
    Vincentelli R, Canaan S, Campanacci V, Valencia C, Maurin D, et al. (2004) High-throughput automated refolding screening of inclusion bodies. Protein Sci 13:2782–2792CrossRefGoogle Scholar
  30. 30.
    Kramarczyk JF (2003) High-throughput screening of chromatographic resins and excipients for optimizing selectivity. Tufts University, MedfordGoogle Scholar
  31. 31.
    Bergander T et al. (2008) High-throughput process development: determination of dynamic binding capacity using microtiter filter plates filled with chromatography resin. Biotechnol Prog 24(3):632–639CrossRefGoogle Scholar
  32. 32.
    Wensel DL, Kelley BD, Coffman JL (2008) High-throughput screening of chromatographic separations: III. Monoclonal antibodies on ceramic hydroxyapatite. Biotechnol Bioeng 100:839–854CrossRefGoogle Scholar
  33. 33.
    Sanaie N, Cecchini D, Pieracci J (2012) Applying high-throughput methods to develop a purification process for a highly glycosylated protein. Biotechnol J 7:1242–1255CrossRefGoogle Scholar
  34. 34.
    Kökpinar Ö, Harkensee D, Kasper C, Scheper T, Zeidler R, Reif O-W, Ulber R (2006) Innovative modular membrane adsorber system for high-throughput downstream screening for protein purification. Biotechnol Prog 22:1215–1219CrossRefGoogle Scholar
  35. 35.
    Kang Y, Ng S, Lee J, Adaelu J, Qi B, Persaud K, Ludwig D, Balderes P (2012) Development of an alternative monoclonal antibody polishing step. Biopharm Int 25(5):34–36, 38–42, 44–46Google Scholar
  36. 36.
    McDonald P, Tran B, Williams C, Wong M, Zhao T, Kelley B, Lester P (2016) The rapid identification of elution conditions for therapeutic antibodies from cation-exchange chromatography resins using high-throughput screening. J Chromatogr A 1433:66–74CrossRefGoogle Scholar
  37. 37.
    Connell-Crowley L, Larimore EA, Gillespie R (2013) Using high throughput screening to define virus clearance by chromatography resins. Biotechnol Bioeng 110:1984–1994CrossRefGoogle Scholar
  38. 38.
    Lacki K (2012) High-throughput process development of chromatography steps: advantages and limitations of different formats used. Biotechnol J 7:1192–1202CrossRefGoogle Scholar
  39. 39.
    Wenger M, DePhillips P, Price C, Bracewell D (2007) An automated microscale chromatographic purification of VLPs as a strategy for process development. Biotechnol Appl Biochem 47(2):131–139CrossRefGoogle Scholar
  40. 40.
    Chhatre S, Bracewell DG, Titcherner-Hooker NJ (2009) A microscale approach for predicting the performance of chromatography columns used to recover therapeutic polyclonal antibodies. J Chromatogr A 1216:7806–7815CrossRefGoogle Scholar
  41. 41.
    Williams JG, Tomer KB (2004) Disposable chromatography for a highthroughput nano-ESI/MS and nano-ESI/MS-MS platform. J Am Soc Mass Spectrom 15:1333–1340CrossRefGoogle Scholar
  42. 42.
    Welsh JP, Petroff MG, Rowicki P, Bao H, Linden T, Roush DJ, Pollard JM (2014) A practical strategy for using miniature chromatography columns in a standard high-throughput workflow for purification development of monoclonal antibodies. Biotechnol Prog 30(3):626–635CrossRefGoogle Scholar
  43. 43.
    Keller WR, Evans ST, Ferreiera G, Robbins D, Cramer SM (2015) Use of minicolumns for linear isotherm parameter estimation and predication of benchtop column performance. J Chromatogr A 1418:94–102CrossRefGoogle Scholar
  44. 44.
    Brenac Brochier V, Schapman A, Santambien P, Britsch L (2008) Fast purification process optimization using mixed-mode chromatography sorbents in pre-packed mini-columns. J Chromatogr A 1177(2):226–233CrossRefGoogle Scholar
  45. 45.
    Feliciano J, Berrill A, Ahnfelt M, Brekkan E, Evans B, Fung Z, Godavarti R, Nilsson-Välimaa K, Salm J, Saplakoglu U, Switzer M, Łącki K (2016) Evaluating high-throughput scale-down chromatography platforms for increased process understanding. Eng Life Sci 16:169–178CrossRefGoogle Scholar
  46. 46.
    Kolzowski S, Swann P (2006) Current and utures issues in manufacting and development of monoclonal antibodies. Adv Drug Delivery Rev 58:707–722CrossRefGoogle Scholar
  47. 47.
    Gilg D, Riedl B, Zier A, Zimmermann M (1996) Analytical methods for the characterization and quality control of pharmaceutical peptides and proteins, using erythropoietin as an example. Pharm Acta Helv 71:384–394CrossRefGoogle Scholar
  48. 48.
    Rege K, Pepsin M, Falcon B, Steele L, Heng M (2005) High-throughput process development for recombinant protein purification. Biotechnol Bioeng 93:618–630CrossRefGoogle Scholar
  49. 49.
    Fahrner RL et al. (2001) Industrial purification of pharmaceutical antibodies: development, operation, and validation of chromatography processes. Biotechnol Genet Eng Rev 18:301–327CrossRefGoogle Scholar
  50. 50.
    Flatman S, Alam I, Gerard J, Mussa N (2007) Process analytics for purification of monoclonal antibodies. J Chromtogr B 848:79–87CrossRefGoogle Scholar
  51. 51.
    Pais DAM, Carrondo MJT, Alves PM, Teixeira AP (2014) Towards real-time monitoring of therapeutic protein quality in mammalian cell processes. Curr Opin Biotechnol 30:161–167CrossRefGoogle Scholar
  52. 52.
    den Engelsman J et al. (2011) Strategies for the assessment of protein aggregates in pharmaceutical biotech product development. Pharm Res 28:920–933CrossRefGoogle Scholar
  53. 53.
    Gervais D (2016) Protein deamidation in biopharmaceutical manufacture: understanding, control and impact. J Chem Technol Biotechnol 91:569–575CrossRefGoogle Scholar
  54. 54.
    Harris RJ et al. (2001) Identification of multiple sources of charge heterogeneity in a recombinant antibody. J Chromatogr B Biomed Sci Appl 752:233–245CrossRefGoogle Scholar
  55. 55.
    Kroon DJ, Baldwin-Ferro A, Lalan P (1992) Identification of sites of degradation in a therapeutic monoclonal antibody by peptide mapping. Pharm Res 9:1386–1393CrossRefGoogle Scholar
  56. 56.
    Perkins M, Theiler R, Lunte S, Jeschke M (2000) Determination of the origin of charge heterogeneity in a murine monoclonal antibody. Pharm Res 17:1110–1117CrossRefGoogle Scholar
  57. 57.
    Khawli LA et al. (2010) Charge variants in IgG1. MAbs 2:613–624CrossRefGoogle Scholar
  58. 58.
    Kostal V, Katzenmeyer J, Arriaga EA (2008) Capillary electrophoresis in bioanalysis. Anal Chem 80:4533–4550CrossRefGoogle Scholar
  59. 59.
    Goetze AM, Schenauer MR, Flynn GC (2010) Assessing monoclonal antibody product quality attribute criticality through clinical studies. MAbs 2:500–507CrossRefGoogle Scholar
  60. 60.
    An Y, Zhang Y, Mueller H-M, Shameem M, Chen X (2014) A new tool for monoclonal antibody analysis: application of IdeS proteolysis in IgG domain-specific characterization. MAbs 6:879–893CrossRefGoogle Scholar
  61. 61.
    Bertolotti-Ciarlet A, Wang W, Lownes R, Pristatsky R, Fang Y, McKelvey T, Li Y, Li Y, Drumond J, Prueksaritanont T, et al. (2009) Impact of methionine oxidation on the binding of human IgG1 to FcRn and Fcγ receptors. Mol Immunol 46:1878–1882CrossRefGoogle Scholar
  62. 62.
    Pan H, Chen K, Chu L, Kinderman F, Apostol I, Huang G (2009) Methionine oxidation in human IgG2 Fc decreases binding affinities to protein A and FcRn. Protein Sci 18:424–433CrossRefGoogle Scholar
  63. 63.
    van Beers MMC, Bardor M (2012) Minimizing immunogenicity of biopharmaceuticals by controlling critical quality attributes of proteins. Biotechnol J 7:1473–1484CrossRefGoogle Scholar
  64. 64.
    Roberts CJ (2017) Protein aggregation and its impact on product quality. Curr Opin Biotechnol 30:211–217CrossRefGoogle Scholar
  65. 65.
    Jiskoot W et al. (2011) Protein instability and immunogenicity: roadblocks to clinical application of injectable protein delivery systems for sustained release. J Pharm Sci 101:946–954CrossRefGoogle Scholar
  66. 66.
    Hong P, Koza S, Bovier ES (2012) A review size-exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. J Liq Chromatogr Relat Technol 35:2923–2950PubMedPubMedCentralGoogle Scholar
  67. 67.
    Zhang R, Tang I-C, Wang J, Yang S-T (2012) Cell-based assays in high-throuput screening for drug discovery. Int J Biotechnol Wellness Ind 1:31–51Google Scholar
  68. 68.
    Gupta S et al. (2007) Recommendations for the design, optimization, and qualification of cell-based assays used for the detection of neutralizing antibody responses elicited to biological therapeutics. J Immunol Methods 321:1–18CrossRefGoogle Scholar
  69. 69.
    Shrock RD (2012) Cell-based potency assays: expectation and realities. Bioprocess J 11:4–12CrossRefGoogle Scholar
  70. 70.
    Cox KL, Devanarayan V, Kriauciunas A, Manetta J, Montrose C, Sittampalam S (2014) NCBI – assay guidance manual [internet]. https://www.ncbi.nlm.nih.gov/books/NBK92434/. Accessed 1 Feb 2017
  71. 71.
    Hahnefeld C, Drewianka S, Herberg FW (2004) Methods in molecular medicine. Humana Press Inc., TotowaGoogle Scholar
  72. 72.
    Joelsson D, Moravec P, Troutman M, Pigeon J, DePhillips P (2008) Optimizing ELISAs for precision and robustness using laboratory automation and statistical design of experiments. J Immunol Methods 337:35–41CrossRefGoogle Scholar
  73. 73.
    FDA (2014) Immunogenicity assessment for therapeutic protein products. Guidance for industry. U.S. Department of Health and Human Services, August 2014Google Scholar
  74. 74.
    Rey G, Wendeler MW (2012) Full automation and validation of a flexible ELISA platform for host cell protein and protein A impurity detection in biopharmaceuticals. J Pharm Biomed Anal 70:580–586CrossRefGoogle Scholar
  75. 75.
    Bracewell DG, Francis R, Smales CM (2015) The future of host cell protein (HCP) identification during process development and manufacturing linked to a risk-based management for their control. Biotechnol Bioeng 112:1727–1737CrossRefGoogle Scholar
  76. 76.
    Stadlmann J, Pabst M, Altmann F (2010) Analytical and functional aspects of antibody sialylation. J Clin Immunol 30:15–19CrossRefGoogle Scholar
  77. 77.
    Solá RJ, Griebenow K (2011) Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. BioDrugs 24:9–21CrossRefGoogle Scholar
  78. 78.
    Beck A et al. (2008) Trends in glycosylation, glycoanalysis and glycoengineering of therapeutic antibodies and Fc-fusion proteins. Curr Pharm Biotechnol 9:482–501CrossRefGoogle Scholar
  79. 79.
    Rogers RS, Nightlinger NS, Livingston B, Campbell P, Bailey R, Balland A (2015) Development of a quantitative mass spectrometry multi-attribute method for characterization, quality control testing and disposition of biologics. mAbs 7:881–890CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Abhinav A. Shukla
    • 1
  • Shahid Rameez
    • 1
  • Leslie S. Wolfe
    • 1
  • Nathan Oien
    • 1
  1. 1.Process Development and ManufacturingKBI Biopharma Inc.DurhamUSA

Personalised recommendations