Advertisement

Platforms for Manufacturing Allogeneic, Autologous and iPSC Cell Therapy Products: An Industry Perspective

  • Eytan Abraham
  • Behnam Baghbaderani Ahmadian
  • Kathryn Holderness
  • Yonatan Levinson
  • Erika McAfee
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 165)

Abstract

As cell therapy processes mature from benchtop research protocols to industrial processes capable of manufacturing market-relevant numbers of doses, new cell manufacturing platforms are required. Here we give an overview of the platforms and technologies currently available to manufacture allogeneic cell products, such as mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs), and technologies for mass production of autologous cell therapies via scale-out. These technologies include bioreactors, microcarriers, cell separation and cryopreservation equipment, molecular biology tools for iPSC generation, and single-use controlled-environment systems for autologous cell production. These platforms address the challenges of manufacturing cell products in greater numbers while maintaining process robustness and product quality.

Keywords

Allogeneic Autologous CAR-T Cell therapy iPSCs Mesenchymal stem cells 

References

  1. 1.
    Rowley J, Abraham E, Campbell A, Brandwein H, Oh S (2012) Meeting lot-size challenges of manufacturing adherent cells for therapy. BioProcess Int 10:16–22Google Scholar
  2. 2.
    Jung S, Panchalingam KM, Wuerth RD, Rosenberg L, BehieL A (2012) Large-scale production of human mesenchymal stem cells for clinical applications. Biotechnol Appl Biochem 59(2):106–1120CrossRefPubMedGoogle Scholar
  3. 3.
    Peiman H, Viswanathan S (2016) Bioreactor for scale-up: process control. In: Mesenchymal stromal cells: translational pathways to clinical adoption. Academic Press, LondonGoogle Scholar
  4. 4.
    GE Healthcare/Amersham Biosciences (2005) Microcarrier cell culture: principles and methods. GE Healthcare/Amersham Biosciences, PittsburghGoogle Scholar
  5. 5.
    Eibes G, dosSantos F, Andrade PZ, Boura JS, Abecasis MM, DaSilva CL et al (2010) Maximizing the ex vivo expansion of human mesenchymal stem cells using a microcarrier-based stirred culture system. J Biotechnol 146(4):194-197CrossRefPubMedGoogle Scholar
  6. 6.
    Buckland KF, Bobby Gaspar H (2014) Gene and cell therapy for children–new medicines, new challenges? Adv Drug Deliv Rev 73:162–169CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sharpe M, Mount N (2015) Genetically modified T cells in cancer therapy: opportunities and challenges. Dis Model Mech 8(4):337–350CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kharaziha P, Hellström PM, Noorinayer B, Farzaneh F, Aghajani K, Jafari F, et al (2009) Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I-II clinical trial. Eur J Gastroenterol Hepatol 21:1199–1205CrossRefPubMedGoogle Scholar
  9. 9.
    Peng L, Xie D-Y, Lin BL, Liu J, Zhu HP, Xie C, et al (2011) Autologous bone marrow mesenchymal stem cell transplantation in liver failure patients caused by hepatitis B: short-term and long-term outcomes. Hepatology 54:820–828CrossRefPubMedGoogle Scholar
  10. 10.
    Yamada Y, Ueda M, Hibi H, Baba S (2006) A novel approach to periodontal tissue regeneration with mesenchymal stem cells and platelet-rich plasma using tissue engineering technology: a clinical case report. Int J Periodontics Restorative Dent 26:363–369PubMedGoogle Scholar
  11. 11.
    Carrion F, Nova E, Ruiz C, Diaz F, Inostroza C, Rojo D, et al (2010) Autologous mesenchymal stem cell treatment increased T regulatory cells with no effect on disease activity in two systemic lupus erythematosus patients. Lupus 19:317–322CrossRefPubMedGoogle Scholar
  12. 12.
    Bonab M, Sahraian M, Aghsaie A, Karvigh S, Hosseinian S, Nikbin B, et al (2012) Autologous mesenchymal stem cell therapy in progressive multiple sclerosis: an open label study. Curr Stem Cell Res Ther 7(6):407–414CrossRefGoogle Scholar
  13. 13.
    Gupta P, Das A, Chullikana A, Majumdar A (2012) Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell Res Ther 3(4):25CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ishikawa E, Tsuboi K, Saijo K, Harada H, Takano S, Nose T, Ohno T (2004) Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Res 24(3b):1861–1871PubMedGoogle Scholar
  15. 15.
    Pietra G, Mazini C, Vitale M, Balsamo M, Ognio E, Boitano M, Queirolo P, Moretta L, Mingari MC (2009) Natural killer cells kill human melanoma cells with characteristics of cancer stem cells. Int Immunol 21(7):793–801CrossRefPubMedGoogle Scholar
  16. 16.
    Dewan M, Terunuma H, Takada M, Tanaka Y, Abe H, Sata T, Toi M, Yamamoto N (2007) Role of natural killer cells in hormone-independent rapid tumor formation and spontaneous metastasis of breast cancer cells in vivo. Breast Cancer Res Treat 104(3):267–275CrossRefPubMedGoogle Scholar
  17. 17.
    Palucka K, Banchereau J (2013) Review: dendritic-cell-based therapeutic cancer vaccines. Immunity 39(1):38–48CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Maus MV, Levine BL (2016) Chimeric antigen receptor T-Cell therapy for the community Oncologist. Oncologist 21:608–617CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bersenev A, Levine BL (2012) Convergence of gene and cell therapy. Regen Med 7(6 Suppl):50–56CrossRefPubMedGoogle Scholar
  20. 20.
    Porter DL et al (2015) Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med 7(303):303ra139CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Melenhorst JJ, Levine BL (2013) Innovation and opportunity for chimeric antigen receptor targeted T cells. Cytotherapy 15(9):1046–1053CrossRefPubMedGoogle Scholar
  22. 22.
    Grupp SA et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Levine BL (2015) Performance-enhancing drugs: design and production of redirected chimeric antigen receptor (CAR) T cells. Cancer Gene Ther 22(2):79–84CrossRefPubMedGoogle Scholar
  24. 24.
    Levine BL, June CH (2013) Perspective: assembly line immunotherapy. Nature 498(7455):S17CrossRefPubMedGoogle Scholar
  25. 25.
    Lapteva N, Vera JF (2011) Optimization manufacture of virus- and tumor-specific T cells. Stem Cells Int 2011:1–8CrossRefGoogle Scholar
  26. 26.
    Kaiser AD et al (2015) Towards a commercial process for the manufacture of genetically modified T cells for therapy. Cancer Gene Ther 22(2):72–78CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Foley L, Whitaker M (2012) Concise review: cell therapies: the route to widespread adoption. Stem Cells Transl Med 1(5):438–447CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tumaini B et al (2013) Simplified process for the production of anti-CD19-CAR-engineered T cells. Cytotherapy 15(11):1406–1415CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Weber J, Atkins M, Hwu P, Radvanyi L, Sznol M, Yee C (2011) White paper on adoptive cell therapy for cancer with tumor-infiltrating lymphocytes:areport of the CTEP subcommittee on adoptive cell therapy. Clin Cancer Res 17(7):1664–1673CrossRefPubMedGoogle Scholar
  30. 30.
    Apel M, Brüning M, Granzin M, Essl M, Stuth J, Blaschke J, Spiegel I, Muller S, Kabaha E, Fahrendorff E, Miltenyi S, Schmitz J, Balshusemann D, Huppert V (2013) Integrated clinical scale manufacturing system for cellular products derived by magnetic cell separation, centrifugation and cell culture. Chem Ing Tech 85(1-2):103–110CrossRefGoogle Scholar
  31. 31.
    Freeman M, Fuerst M (2012) Does the FDA have regulatory authority over adult autologous stem cell therapies? 21 CFR 1271 and the emperor’s new clothes. J Transl Med 10:60CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Salmikangas P, Celis P (2011) Current challenges in the development of novel cell-based medicinal products. Regul Rapp 8(7/8):4–7Google Scholar
  33. 33.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147CrossRefGoogle Scholar
  34. 34.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872CrossRefPubMedGoogle Scholar
  35. 35.
    Rao M (2007) Scalable human ES culture for therapeutic use: propagation, differentiation, genetic modification and regulatory issues. Gene Ther 15:82–88CrossRefPubMedGoogle Scholar
  36. 36.
    Rao M, Condic ML (2008) Alternative sources of pluripotent stem cells: scientific solutions to an ethical dilemma. Stem Cells Dev 17:1–10CrossRefPubMedGoogle Scholar
  37. 37.
    Ellerström C, Strehl R, Moya K, Andersson K, Bergh C, et al (2006) Derivation of a xeno-free human embryonic stem cell line. Stem Cells 24:2170–2176CrossRefPubMedGoogle Scholar
  38. 38.
    Chen VC, Couture SM, Ye J, Lin Z, Hua G, et al (2012) Scalable GMP compliant suspension culture system for human ES cells. Stem Cell Res 8:388–402CrossRefPubMedGoogle Scholar
  39. 39.
    Carpenter MK, Rao MS (2015) Concise review: making and using clinically compliant pluripotent stem cell lines. Stem Cells Transl Med 4:381–388CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, et al (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379:713–720CrossRefPubMedGoogle Scholar
  41. 41.
    Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2:3081–3089CrossRefPubMedGoogle Scholar
  42. 42.
    Schlaeger TM, Daheron L, Brickler TR, Entwisle S, Chan K, et al (2015) A comparison of non-integrating reprogramming methods. Nat Biotechnol 33:58–63CrossRefPubMedGoogle Scholar
  43. 43.
    Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, et al (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8:424–429CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Dowey SN, Huang X, Chou BK, Ye Z, Cheng L (2012) Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression. Nat Protoc 7:2013–2021CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Baghbaderani BA, Tian X, Neo BH, Burkall A, Dimezzo T, et al (2015) cGMP-manufactured human induced pluripotent stem cells are available for pre-clinical and clinical applications. Stem Cell Rep 5:647–659CrossRefGoogle Scholar
  46. 46.
    Baghbaderani BA, Rao MS, Fellner T (2015) Manufacturing human induced pluripotent stem cells for clinical applications. BioProcess Int 13:10–21Google Scholar
  47. 47.
    Wang S, Zou C, Fu L, Wang B, An J, et al (2015) Autologous iPSC-derived dopamine neuron transplantation in a nonhuman primate Parkinson’s disease model. Cell Discov 1:15012CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Emborg ME, Liu Y, Xi J, Zhang X, Yin Y, et al (2013) Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain. Cell Rep 3:646–650CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Pagliuca FW, Millman JR, Gurtler M, Segel M, Van Dervort A, et al (2014) Generation of functional human pancreatic beta cells in vitro. Cell 159:428–439CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, et al (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452CrossRefPubMedGoogle Scholar
  51. 51.
    Li W, Chen S, Li JY (2015) Human induced pluripotent stem cells in Parkinson’s disease: a novel cell source of cell therapy and disease modeling. Prog Neurobiol 134:161–177CrossRefPubMedGoogle Scholar
  52. 52.
    Freyer N, Knospel F, Strahl N, Amini L, Schrade P, et al (2016) Hepatic differentiation of human induced pluripotent stem cells in a perfused three-dimensional multicompartment bioreactor. Biores Open Access 5:235–248CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Sugita S, Iwasaki Y, Makabe K, Kamao H, Mandai M, et al (2016) Successful transplantation of retinal pigment epithelial cells from MHC homozygote iPSCs in MHC-matched models. Stem Cell Reports 7:635–648CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Barbuti A, Benzoni P, Campostrini G, Dell’Era P (2016) Human derived cardiomyocytes: a decade of knowledge after the discovery of induced pluripotent stem cells. Dev Dyn 245:1145–1158CrossRefPubMedGoogle Scholar
  55. 55.
    Batta K, Menegatti S, Garcia-Alegria E, Florkowska M, Lacaud G, et al (2016) Concise review: recent advances in the in vitro derivation of blood cell populations. Stem Cells Transl Med 5:1330–1337CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Baghbaderani BA, Syama A, Sivapatham R, Pei Y, Mukherjee O, et al (2016) Detailed characterization of human induced pluripotent stem cells manufactured for therapeutic applications. Stem Cell Rev 12:394–420CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    O’Hara DM, Xu Y, Liang Z, Reddy MP, Wu DY, et al (2011) Recommendations for the validation of flow cytometric testing during drug development: II assays. J Immunol Methods 363:120–134CrossRefPubMedGoogle Scholar
  58. 58.
    Pease S, Braghetta P, Gearing D, Grail D, Williams RL (1990) Isolation of embryonic stem (ES) cells in media supplemented with recombinant leukemia inhibitory factor (LIF). Dev Biol 141:344–352CrossRefPubMedGoogle Scholar
  59. 59.
    Chin AC, Padmanabhan J, Oh SK, Choo AB (2010) Defined and serum-free media support undifferentiated human embryonic stem cell growth. Stem Cells Dev 19:753–761CrossRefPubMedGoogle Scholar
  60. 60.
    Goh PA, Caxaria S, Casper C, Rosales C, Warner TT, et al (2013) A systematic evaluation of integration free reprogramming methods for deriving clinically relevant patient specific induced pluripotent stem (iPS) cells. PLoS One 8:e81622CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Eytan Abraham
    • 1
  • Behnam Baghbaderani Ahmadian
    • 2
  • Kathryn Holderness
    • 1
  • Yonatan Levinson
    • 1
  • Erika McAfee
    • 1
  1. 1.Research and Technology, LonzaWalkersvilleUSA
  2. 2.Process Development, LonzaWalkersvilleUSA

Personalised recommendations