Advertisement

Biorefineries pp 125-136 | Cite as

Sugarcane-Biorefinery

  • Sílvio VazJr.
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 166)

Abstract

Concepts such as biorefinery and green chemistry focus on the usage of biomass, as with the oil value chain. However, it can cause less negative impact on the environment. A biorefinery based on sugarcane (Saccharum spp.) as feedstock is an example, because it can integrate into the same physical space, of processes for obtaining biofuels (ethanol), chemicals (from sugars or ethanol), electricity, and heat.

The use of sugarcane as feedstock for biorefineries is dictated by its potential to supply sugars, ethanol, natural polymers or macromolecules, organic matter, and other compounds and materials. By means of conversion processes (chemical, biochemical, and thermochemical), sugarcane biomass can be transformed into high-value bioproducts to replace petrochemicals, as a bioeconomy model.

Keywords

Bioeconomy Biomass Green chemistry Sugarcane Sustainable chemistry 

References

  1. 1.
    Vaz S Jr (2014) Perspectives for the Brazilian residual biomass in renewable chemistry. Pure Appl Chem 86:833–842. doi:10.1515/pac-2013-0917CrossRefGoogle Scholar
  2. 2.
    Centro de Gestão e Estudos Estratégicos (2010) Química verde no Brasil: 2010–2030. CGEE, Brasília, 438 ppGoogle Scholar
  3. 3.
    United States Department of Energy (2004) Top value added chemicals from biomass: results of screening for potential candidates from sugars and synthesis gas. US-DOE, Springfield, p 76Google Scholar
  4. 4.
    Brazilian Sugarcane Industry Association (2014) Unicadata. Available on: http://www.unicadata.com.br/. Accessed 14 Dec 2015
  5. 5.
    Food and Agriculture Organization of the United Nations (2013) Faostat. Available on: http://faostat3.fao.org/home/E. Accessed 14 Dec 2015
  6. 6.
    Dinardo-Miranda LL, Vasconcelos ACM, Landell MGA (eds) (2008) Cana-de-açúcar. Instituto Agronômico, Campinas, 882 ppGoogle Scholar
  7. 7.
    Vaz SJ (2014) A renewable chemistry linked to the Brazilian biofuel production. Chem Biol Technol Agric 1:13. doi: 10.1186/s40538-014-0013-1 CrossRefGoogle Scholar
  8. 8.
    Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27. doi: 10.1016/j.renene.2011.06.045 CrossRefGoogle Scholar
  9. 9.
    Da Silva MAS, Griebeler NP, Borges LC (2007) Uso de vinhaça e impactos nas propriedades do solo e lençol freático. Revista Brasileira de Engenharia Agrícola e Ambiental 11:108-114. doi:10.1590/S1415-43662007000100014CrossRefGoogle Scholar
  10. 10.
    Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates - the US Department of Energy’s Top 10 revisited. Green Chem 12:539–554. doi: 10.1039/B922014C CrossRefGoogle Scholar
  11. 11.
    Bomgardner MM (2014) Biobased polymers. Chem Eng News 92:10–14Google Scholar
  12. 12.
    BioAmber (2015) Products. Available on: http://www.bio-amber.com/bioamber/en/products#succinic_acid. Accessed 14 Dec 2015
  13. 13.
    Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York, p 30Google Scholar
  14. 14.
    Kamm B, Gruber PR, Kamm M (2006) Biorefineries: industrial processes and products: status quo and future directions. Wiley-VCH, Weinheim, 406 ppGoogle Scholar
  15. 15.
    United States Department of Energy (2007) Top value added chemicals from biomass: results of screening for potential candidates from biorefinery lignin. US-DOE, Springfield, p 79Google Scholar
  16. 16.
    Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599. doi: 10.1021/cr900354u CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Collinson SR, Thielemans W (2010) New materials focusing on starch, cellulose and lignin. Coord Chem Rev 254:1854–1870. doi: 10.1016/j.ccr.2010.04.007 CrossRefGoogle Scholar
  18. 18.
    Salomon KR, Lora EES (2009) Estimate of the electric energy generating potential for different sources of biogas in Brazil. Biomass Bioenergy 33:1101–1107. doi: 10.1016/j.biombioe.2009.03.001 CrossRefGoogle Scholar
  19. 19.
    Cutright TJ (2002) Biotechnology principles. In: Ghassemi A (ed) Handbook of pollution and waste minimization. Marcel Dekker, New York, pp 189–232Google Scholar
  20. 20.
    Nussbaumer T (2003) Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction. Energy Fuels 17:1510–1521. doi: 10.1021/ef030031q CrossRefGoogle Scholar
  21. 21.
    Akay G, Jordan CA (2011) Gasification of fuel cane bagasse in a downdraft gasifier: influence of lignocellulosic composition and fuel particle size on syngas composition and yield. Energy Fuels 25:2274–2283. doi:10.1021/ef101494wCrossRefGoogle Scholar
  22. 22.
    Gökalp I, Lebas E (2004) Alternative fuels for industrial gas turbines (AFTUR). Appl Therm Eng 24:1655–1663. doi: 10.1016/j.applthermaleng.2003.10.035 CrossRefGoogle Scholar
  23. 23.
    Vijayendran BJ (2010) Bio products from bio refineries – trends, challenges and opportunities. J Bus Chem 7:109–115Google Scholar
  24. 24.
    Biotechnology Industry Organization (2010) Biobased chemicals and products: a new driver for green jobs. Available on: http://www.bio.org/articles/biobased-chemicals-and-products-new-driver-green-jobs. Accessed 14 Dec 2015

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Brazilian Agricultural Research Corporation – National Research Center for Agroenergy (Embrapa Agroenergy) – Parque Estação BiológicaBrasília/DFBrazil

Personalised recommendations