Biophotoelectrochemistry of Photosynthetic Proteins

  • Nicolas PlumeréEmail author
  • Marc M. Nowaczyk
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 158)


This chapter presents biophotoelectrochemical systems where one of nature’s photosynthetic proteins, such as photosystem 1 (PS1), photosystem 2 (PS2), or bacterial reaction centers, are employed to create devices for technological applications. We use recent advances in biophotoelectrodes for energy conversion and sensing to illustrate the fundamental approaches in half-cell design and characterization. The aim is to guide electrochemists and photosynthetic researchers in the development of hybrid systems interfacing photosynthetic proteins with electrodes ranging from biosensors to biophotovoltaic cells. The first part gives an overview of the photosynthetic electron transfer chain with details on photosynthetic proteins and on the properties relevant for technological applications. The second part describes and critically discusses the main applications of biophotoelectrochemical cells based on photosynthetic proteins and exposes the respective requirement in electrode design. The following and final parts present the standard methodologies for the characterization of the biophotoelectrochemical half-cells with the main objectives of enhancing our mechanistic understanding of electron transfer, charge recombination, overpotential in photocurrent generation and protein degradation processes in devices, and thus open the perspectives for novel biophotoelectrochemical concepts and their rational optimization toward practical efficiencies.


Bacterial reaction centers Biophotoelectrochemical cells Biophotovoltaics Biosensors Charge carrier Charge recombination Overpotential Photocurrent Photosystem 1 Photosystem 2 Water splitting 


  1. 1.
    Hohmann-Marriott MF, Blankenship RE (2011) Evolution of photosynthesis. Annu Rev Plant Biol 62(1):515–548. doi: 10.1146/annurev-arplant-042110-103811 CrossRefGoogle Scholar
  2. 2.
    Noy D, Moser CC, Dutton PL (2006) Design and engineering of photosynthetic light-harvesting and electron transfer using length, time, and energy scales. Biochim Biophys Acta 1757(2):90–105. doi: 10.1016/j.bbabio.2005.11.010 CrossRefGoogle Scholar
  3. 3.
    Dau H, Zaharieva I (2009) Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Acc Chem Res 42(12):1861–1870. doi: 10.1021/ar900225y CrossRefGoogle Scholar
  4. 4.
    de Wijn R, van Gorkom HJ (2002) The rate of charge recombination in photosystem II. Biochim Biophys Acta 1553(3):302–308. doi: 10.1016/S0005-2728(02)00183-4 CrossRefGoogle Scholar
  5. 5.
    Kuhl H, Kruip J, Seidler A, Krieger-Liszkay A, Bunker M, Bald D, Scheidig AJ, Rögner M (2000) Towards structural determination of the water-splitting enzyme: purification, crystallization, and preliminary crystallographic studies of photosystem II from a thermophilic cyanobacterium. J Biol Chem 275(27):20652–20659. doi: 10.1074/jbc.M001321200 CrossRefGoogle Scholar
  6. 6.
    Lubner CE, Applegate AM, Knörzer P, Ganago A, Bryant DA, Happe T, Golbeck JH (2011) Solar hydrogen-producing bionanodevice outperforms natural photosynthesis. Proc Natl Acad Sci U S A 108(52):20988–20991. doi: 10.1073/pnas.1114660108 CrossRefGoogle Scholar
  7. 7.
    Yao DC, Brune DC, Vermaas WF (2012) Lifetimes of photosystem I and II proteins in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 586(2):169–173. doi: 10.1016/j.febslet.2011.12.010 CrossRefGoogle Scholar
  8. 8.
    Yehezkeli O, Tel-Vered R, Wasserman J, Trifonov A, Michaeli D, Nechushtai R, Willner I (2012) Integrated photosystem II-based photo-bioelectrochemical cells. Nat Commun 3:742. doi: 10.1038/ncomms1741 CrossRefGoogle Scholar
  9. 9.
    Kothe T, Plumeré N, Badura A, Nowaczyk MM, Guschin DA, Rögner M, Schuhmann W (2013) Combination of a photosystem 1-based photocathode and a photosystem 2-based photoanode to a Z-scheme mimic for biophotovoltaic applications. Angew Chem Int Ed 52(52):14233–14236. doi: 10.1002/anie.201303671 CrossRefGoogle Scholar
  10. 10.
    Gerster D, Reichert J, Bi H, Barth JV, Kaniber SM, Holleitner AW, Visoly-Fisher I, Sergani S, Carmeli I (2012) Photocurrent of a single photosynthetic protein. Nat Nanotechnol 7(10):673–676. doi: 10.1038/nnano.2012.165 CrossRefGoogle Scholar
  11. 11.
    Moore GF, Brudvig GW (2011) Energy conversion in photosynthesis: a paradigm for solar fuel production. Annu Rev Condens Matter Phys 2(1):303–327. doi: 10.1146/annurev-conmatphys-062910-140503 CrossRefGoogle Scholar
  12. 12.
    Kothe T, Schuhmann W, Rögner M, Plumeré N (2015) 9 Semi-artificial photosynthetic Z-scheme for hydrogen production from water. In: Rögner M (ed) Biohydrogen. De Gruyter, Berlin, München, BostonGoogle Scholar
  13. 13.
    Tel-Vered R, Willner I (2014) Photo-bioelectrochemical cells for energy conversion, sensing, and optoelectronic applications. ChemElectroChem 1(11):1778–1797. doi: 10.1002/celc.201402133 CrossRefGoogle Scholar
  14. 14.
    Swainsbury DJK, Friebe VM, Frese RN, Jones MR (2014) Evaluation of a biohybrid photoelectrochemical cell employing the purple bacterial reaction centre as a biosensor for herbicides. Biosens Bioelectron 58:172–178. doi: 10.1016/j.bios.2014.02.050 CrossRefGoogle Scholar
  15. 15.
    Giardi MT, Pace E (2005) Photosynthetic proteins for technological applications. Trends Biotechnol 23(5):257–263. doi: 10.1016/j.tibtech.2005.03.003 CrossRefGoogle Scholar
  16. 16.
    Lambreva MD, Giardi MT, Rambaldi I, Antonacci A, Pastorelli S, Bertalan I, Husu I, Johanningmeier U, Rea G (2013) A powerful molecular engineering tool provided efficient Chlamydomonas mutants as bio-sensing elements for herbicides detection. PLoS One 8(4), e61851. doi: 10.1371/journal.pone.0061851 CrossRefGoogle Scholar
  17. 17.
    Rea G, Polticelli F, Antonacci A, Scognamiglio V, Katiyar P, Kulkarni SA, Johanningmeier U, Giardi MT (2009) Structure-based design of novel Chlamydomonas reinhardtii D1-D2 photosynthetic proteins for herbicide monitoring. Protein Sci 18(10):2139–2151. doi: 10.1002/pro.228 CrossRefGoogle Scholar
  18. 18.
    Hartmann V, Kothe T, Pöller S, El-Mohsnawy E, Nowaczyk MM, Plumeré N, Schuhmann W, Rögner M (2014) Redox hydrogels with adjusted redox potential for improved efficiency in Z-scheme inspired biophotovoltaic cells. Phys Chem Chem Phys 16(24):11936. doi: 10.1039/c4cp00380b CrossRefGoogle Scholar
  19. 19.
    Mersch D, Lee CY, Zhang JZ, Brinkert K, Fontecilla-Camps JC, Rutherford AW, Reisner E (2015) Wiring of photosystem II to hydrogenase for photoelectrochemical water splitting. J Am Chem Soc 137(26):8541–8549. doi: 10.1021/jacs.5b03737 CrossRefGoogle Scholar
  20. 20.
    Krassen H, Schwarze A, Friedrich B, Ataka K, Lenz O, Heberle J (2009) Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]-hydrogenase. ACS Nano 3(12):4055–4061. doi: 10.1021/nn900748j CrossRefGoogle Scholar
  21. 21.
    Zhao F, Conzuelo F, Hartmann V, Li H, Nowaczyk MM, Plumeré N, Rögner M, Schuhmann W (2015) Light induced H2 evolution from a biophotocathode based on photosystem 1 - Pt nanoparticles complexes integrated in solvated redox polymers films. J Phys Chem B 119(43):13726–13731. doi: 10.1021/acs.jpcb.5b03511 CrossRefGoogle Scholar
  22. 22.
    Nguyen K, Bruce BD (2014) Growing green electricity: progress and strategies for use of photosystem I for sustainable photovoltaic energy conversion. Biochim Biophys Acta 1837(9):1553–1566. doi: 10.1016/j.bbabio.2013.12.013 CrossRefGoogle Scholar
  23. 23.
    Das R, Kiley PJ, Segal M, Norville J, Yu AA, Wang L, Trammell SA, Reddick LE, Kumar R, Stellacci F, Lebedev N, Schnur J, Bruce BD, Zhang S, Baldo M (2004) Integration of photosynthetic protein molecular complexes in solid-state electronic devices. Nano Lett 4(6):1079–1083. doi: 10.1021/nl049579f CrossRefGoogle Scholar
  24. 24.
    Mershin A, Matsumoto K, Kaiser L, Yu D, Vaughn M, Nazeeruddin MK, Bruce BD, Graetzel M, Zhang S (2012) Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO. Sci Rep 2:234. doi: 10.1038/srep00234 CrossRefGoogle Scholar
  25. 25.
    Ocakoglu K, Krupnik T, van den Bosch B, Harputlu E, Gullo MP, Olmos JDJ, Yildirimcan S, Gupta RK, Yakuphanoglu F, Barbieri A, Reek JNH, Kargul J (2014) Photosystem I-based biophotovoltaics on nanostructured hematite. Adv Funct Mater 24(47):7467–7477. doi: 10.1002/adfm.201401399 CrossRefGoogle Scholar
  26. 26.
    Kato M, Cardona T, Rutherford AW, Reisner E (2013) Covalent immobilization of oriented photosystem II on a nanostructured electrode for solar water oxidation. J Am Chem Soc 135(29):10610–10613. doi: 10.1021/ja404699h CrossRefGoogle Scholar
  27. 27.
    Yehezkeli O, Wilner OI, Tel-Vered R, Roizman-Sade D, Nechushtai R, Willner I (2010) Generation of photocurrents by bis-aniline-cross-linked Pt nanoparticle/photosystem I composites on electrodes. J Phys Chem B 114(45):14383–14388. doi: 10.1021/jp100454u CrossRefGoogle Scholar
  28. 28.
    Ciesielski PN, Faulkner CJ, Irwin MT, Gregory JM, Tolk NH, Cliffel DE, Jennings GK (2010) Enhanced photocurrent production by photosystem I multilayer assemblies. Adv Funct Mater 20(23):4048–4054. doi: 10.1002/adfm.201001193 CrossRefGoogle Scholar
  29. 29.
    Badura A, Esper B, Ataka K, Grunwald C, Wöll C, Kuhlmann J, Heberle J, Rögner M (2006) Light-driven water splitting for (bio-)hydrogen production: photosystem 2 as the central part of a bioelectrochemical device. Photochem Photobiol 82(5):1385. doi: 10.1562/2006-07-14-RC-969 CrossRefGoogle Scholar
  30. 30.
    Efrati A, Tel-Vered R, Michaeli D, Nechushtai R, Willner I (2013) Cytochrome c-coupled photosystem I and photosystem II (PSI/PSII) photo-bioelectrochemical cells. Energy Environ Sci 6(10):2950. doi: 10.1039/c3ee41568f CrossRefGoogle Scholar
  31. 31.
    Friebe VM, Delgado JD, Swainsbury DJK, Gruber JM, Chanaewa A, van Grondelle R, von Hauff E, Millo D, Jones MR, Frese RN (2016) Plasmon-enhanced photocurrent of photosynthetic pigment proteins on nanoporous silver. Adv Funct Mater 26:285–292. doi: 10.1002/adfm.201504020 CrossRefGoogle Scholar
  32. 32.
    Tan SC, Crouch LI, Jones MR, Welland M (2012) Generation of alternating current in response to discontinuous illumination by photoelectrochemical cells based on photosynthetic proteins. Angew Chem Int Ed 51(27):6667–6671. doi: 10.1002/anie.201200466 CrossRefGoogle Scholar
  33. 33.
    Kothe T, Pöller S, Zhao F, Fortgang P, Rögner M, Schuhmann W, Plumeré N (2014) Engineered electron-transfer chain in photosystem 1 based photocathodes outperforms electron-transfer rates in natural photosynthesis. Chem Eur J 20(35):11029–11034. doi: 10.1002/chem.201402585 CrossRefGoogle Scholar
  34. 34.
    Stieger KR, Feifel SC, Lokstein H, Lisdat F (2014) Advanced unidirectional photocurrent generation via cytochrome c as reaction partner for directed assembly of photosystem I. Phys Chem Chem Phys 16(29):15667–15674. doi: 10.1039/c4cp00935e CrossRefGoogle Scholar
  35. 35.
    Manocchi AK, Baker DR, Pendley SS, Nguyen K, Hurley MM, Bruce BD, Sumner JJ, Lundgren CA (2013) Photocurrent generation from surface assembled photosystem I on alkanethiol modified electrodes. Langmuir 29(7):2412–2419. doi: 10.1021/la304477u CrossRefGoogle Scholar
  36. 36.
    Feifel SC, Stieger KR, Lokstein H, Lux H, Lisdat F (2015) High photocurrent generation by photosystem I on artificial interfaces composed of π-system-modified graphene. J Mater Chem A 3(23):12188–12196. doi: 10.1039/C5TA00656B CrossRefGoogle Scholar
  37. 37.
    Börner RA (2016) Isolation and cultivation of anaerobes. Adv Biochem Eng Biotechnol. doi: 10.1007/10_2016_1 Google Scholar
  38. 38.
    Limoges B, Marchal D, Mavré F, Savéant JM (2006) Electrochemistry of immobilized redox enzymes: kinetic characteristics of NADH oxidation catalysis at diaphorase monolayers affinity immobilized on electrodes. J Am Chem Soc 128(6):2084–2092. doi: 10.1021/ja0569196 CrossRefGoogle Scholar
  39. 39.
    Heering HA, Hirst J, Armstrong FA (1998) Interpreting the catalytic voltammetry of electroactive enzymes adsorbed on electrodes. J Phys Chem B 102(35):6889–6902. doi: 10.1021/jp981023r CrossRefGoogle Scholar
  40. 40.
    Proux-Delrouyre V, Demaille C, Leibl W, Sétif P, Bottin H, Bourdillon C (2003) Electrocatalytic investigation of light-induced electron transfer between cytochrome c6 and photosystem I. J Am Chem Soc 125(45):13686–13692. doi: 10.1021/ja0363819 CrossRefGoogle Scholar
  41. 41.
    Munge B, Das SK, Ilagan R, Pendon Z, Yang J, Frank HA, Rusling JF (2003) Electron transfer reactions of redox cofactors in spinach photosystem I reaction center protein in lipid films on electrodes. J Am Chem Soc 125(41):12457–12463. doi: 10.1021/ja036671p CrossRefGoogle Scholar
  42. 42.
    Alcantara K, Munge B, Pendon Z, Frank HA, Rusling JF (2006) Thin film voltammetry of spinach photosystem II. Proton-gated electron transfer involving the Mn 4 cluster. J Am Chem Soc 128(46):14930–14937. doi: 10.1021/ja0645537 CrossRefGoogle Scholar
  43. 43.
    Faulkner R, Bard AJ (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  44. 44.
    Artero V, Saveant JM (2014) Toward the rational benchmarking of homogeneous H2-evolving catalysts. Energy Environ Sci 7(11):3808–3814. doi: 10.1039/C4EE01709A CrossRefGoogle Scholar
  45. 45.
    Allen H, Hill O, Walton NJ, Whitford D (1985) The coupling of heterogeneous electron transfer to photosystem 1. J Electroanal Chem Interfacial Electrochem 187(1):109–119. doi: 10.1016/0368-1874(85)85579-9 CrossRefGoogle Scholar
  46. 46.
    Kato M, Zhang JZ, Paul N, Reisner E (2014) Protein film photoelectrochemistry of the water oxidation enzyme photosystem II. Chem Soc Rev 43(18):6485–6497. doi: 10.1039/c4cs00031e CrossRefGoogle Scholar
  47. 47.
    Boschloo G, Hagfeldt A (2009) Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc Chem Res 42(11):1819–1826. doi: 10.1021/ar900138m CrossRefGoogle Scholar
  48. 48.
    Gratzel M (2001) Molecular photovoltaics that mimic photosynthesis. Pure Appl Chem 73(3):459–467. doi: 10.1351/pac200173030459 CrossRefGoogle Scholar
  49. 49.
    Larom S, Salama F, Schuster G, Adir N (2010) Engineering of an alternative electron transfer path in photosystem II. Proc Natl Acad Sci U S A 107(21):9650–9655. doi: 10.1073/pnas.1000187107 CrossRefGoogle Scholar
  50. 50.
    Heinz S, Liauw P, Nickelsen J, Nowaczyk M (2016) Analysis of photosystem II biogenesis in cyanobacteria. Biochim Biophys Acta 1857(3):274–287. doi: 10.1016/j.bbabio.2015.11.007 CrossRefGoogle Scholar
  51. 51.
    Vass I (2012) Molecular mechanisms of photodamage in the Photosystem II complex. Biochim Biophys Acta 1817(1):209–217. doi: 10.1016/j.bbabio.2011.04.014 CrossRefGoogle Scholar
  52. 52.
    Plumeré N (2012) Single molecules: a protein in the spotlight. Nat Nanotechnol 7(10):616–617. doi: 10.1038/nnano.2012.175 CrossRefGoogle Scholar
  53. 53.
    Hwang ET, Sheikh K, Orchard KL, Hojo D, Radu V, Lee CY, Ainsworth E, Lockwood C, Gross MA, Adschiri T, Reisner E, Butt JN, Jeuken LJC (2015) A decaheme cytochrome as a molecular electron conduit in dye-sensitized photoanodes. Adv Funct Mater 25(15):2308–2315. doi: 10.1002/adfm.201404541 CrossRefGoogle Scholar
  54. 54.
    Sonoike K (1996) Photoinhibition of photosystem I: its physiological significance in the chilling sensitivity of plants. Plant Cell Physiol 37(3):239–247CrossRefGoogle Scholar
  55. 55.
    Plumeré N (2013) Interferences from oxygen reduction reactions in bioelectroanalytical measurements: the case study of nitrate and nitrite biosensors. Anal Bioanal Chem 405(11):3731–3738. doi: 10.1007/s00216-013-6827-z CrossRefGoogle Scholar
  56. 56.
    Plumeré N, Henig J, Campbell WH (2012) Enzyme-catalyzed O2 removal system for electrochemical analysis under ambient air: application in an amperometric nitrate biosensor. Anal Chem 84(5):2141–2146. doi: 10.1021/ac2020883 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Ruhr-University BochumBochumGermany

Personalised recommendations