Wood Processing Residues

  • Ulrike SaalEmail author
  • Holger Weimar
  • Udo Mantau
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 166)


Rising demand for and scarcity of wood – together with cost savings and resource efficiency requirements – have led to a constant increase in the use of wood processing residues, where appropriate, in the production of wood-based products. This chapter presents/reviews the available information and existing knowledge of residues at various regional levels. It describes the segment of wood processing residues as an important wood resource and the availability of data on a national and on a global level for the quantification and the projection of the resource. The chapter points out the importance of empirical data (collection). Furthermore, it provides a terminology concept for a harmonised use of the diverse assortments and production stages of wood processing residues.


Assortments of wood-based residues Data availability Forest industry branches Terminology of wood-based residues Wood resource assessment 


  1. 1.
    Ericsson K, Nilsson LJ (2006) Assessment of the potential biomass supply in Europe using a resource-focused approach. Biomass Bioenergy 30(1):1–15CrossRefGoogle Scholar
  2. 2.
    Smeets EMW, Faaij APC (2007) Bioenergy potentials from forestry in 2050. Clim Chang 81(3–4):353–390CrossRefGoogle Scholar
  3. 3.
    Mantau U, Saal U, Prins C, Steierer F, Lindner M, Verkerk PJ, Eggers J, Leek N, Oldenburger J, Asikainen A, Anttila P (2010) EUwood-real potential for changes in growth and use of EU forests. Methodology report, HamburgGoogle Scholar
  4. 4.
    Mantau U, Steierer F, Hetsch S, Prins C (2008) Wood resources availability and demands part I: national and regional wood resource balances 2005 EU/EFTA countries. Background Paper to the UNECE/FAO Workshop on Wood balances, HamburgGoogle Scholar
  5. 5.
    Saal U (2010) Industrial wood residues: in: EUwood-Real potential for changes in growth and use of EU forests. Methodology report, Hamburg/GermanyGoogle Scholar
  6. 6.
    Parikka M (2004) Global biomass fuel resources. Biomass Bioenergy 27(6):613–620CrossRefGoogle Scholar
  7. 7.
    Thrän D, Bunzel K, Seyfert U, Zeller V, Buchhorn M, Müller K, Matzdorf B, Gaasch N, Klöckner K, Möller I, Starick A, Brandes J, Günther K, Thum M, Zeddies J, Schönleber N, Gamer W, Schweinle J, Weimar H (2011) Global and regional spatial distribution of biomass potentials: status quo and options for specification. DBFZ Report Nr 7Google Scholar
  8. 8.
    Alderman DR, Smith RL, Reddy VS (1999) Assessing the availability of wood residues and wood residue markets in Virginia. For Prod J 49(4)Google Scholar
  9. 9.
    Szostak A, Ratajczak E, Bidzińska G, Gałecka A (2004) Rynek przemysłowych odpadów drzewnych w Polsce: (The industrial wood residues market in Poland). Drewno–Wood 47(Nr.172):69–89Google Scholar
  10. 10.
    FAO/UNECE (2010) Forest Products Conversion Factors for the UNECE Region: Geneva Timber and Forest Discussion Paper 49Google Scholar
  11. 11.
    Krigstin S, Hayashi K, Tchórzewski J, Wetzel S (2012) Current inventory and modelling of sawmill residues in Eastern Canada. For Chron 88(05):626–635CrossRefGoogle Scholar
  12. 12.
    Steele PH (1984) Factors determining lumber recovery in sawmilling. General Technical Report 39Google Scholar
  13. 13.
    Steele PH, Wagner FG, Lin YN, Skog KE (1991) Influence of softwood sawmill size on lumber recovery. For Prod J 41(4)Google Scholar
  14. 14.
    Yang P, Jenkins BM (2008) Wood residues from sawmills in California. Biomass Bioenergy 32(2):101–108CrossRefGoogle Scholar
  15. 15.
    Batidzirai B, Smeets E, Faaij A (2012) Harmonising bioenergy resource potentials—methodological lessons from review of state of the art bioenergy potential assessments. Renew Sust Energ Rev 16(9):6598–6630CrossRefGoogle Scholar
  16. 16.
    Wartluft JL (1976) A suggested glossary of terms and standards for measuring wood and bark mill residues. USDA Forest Service Research Note NE, Upper DarbyGoogle Scholar
  17. 17.
    Oxford English Dictionary (2015). Accessed 13 October 2015
  18. 18.
    Lohmann U, Blosen M (2003) Holz-Lexikon, 4th edn. DRW-Verl, Leinfelden-EchterdingenGoogle Scholar
  19. 19.
    Mantau U (2012) Holzrohstoffbilanz Deutschland: Entwicklungen und Szenarien des Holzaufkommens und der Holzverwendung von 1987 bis 2015, HamburgGoogle Scholar
  20. 20.
    Mantau U (2014) Wood flow analysis: quantification of resource potentials, cascades and carbon effects. Biomass BioenergyGoogle Scholar
  21. 21.
    FAOSTAT (2015) ForesSTAT [online].*/E
  22. 22.
    Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supplyGoogle Scholar
  23. 23.
    Döring P, Mantau U (2012) Sägeindustrie: Einschnitt und Sägenebenprodukte 2010. Standorte der Holzwirtschaft-Holzrohstoffmonitoring, HamburgGoogle Scholar
  24. 24.
    Mantau U, Hick A (2008) Standorte der Holzwirtschaft: Sägeindustrie Einschnitt und Sägenebenprodukte, HamburgGoogle Scholar
  25. 25.
    Sörgel C, Mantau U, Weimar H (2006) Standorte der Holzwirtschaft: Aufkommen von Sägenebenprodukten und Hobelspänen, HamburgGoogle Scholar
  26. 26.
    Mantau U, Bilitewski B (2010) Stoffstrom-Modell-Holz 2007: Rohstoffströme und CO2-Speicherung in der Holzverwendung. Forschungsbericht für das Kuratorium für Forschung und Technik des Verbandes der Deutschen Papierfabriken e.V. (VDP), CelleGoogle Scholar
  27. 27.
    Smook GA (1992) Handbook for pulp & paper technologists, 2nd edn. Angus Wilde Publications, Vancouver, CanadaGoogle Scholar
  28. 28.
  29. 29.
    Lang A (2004) Charakterisierung des Altholzaufkommens in Deutschland: Rechtliche Rahmenbedingungen-Mengenpotenzial-Materialkennwerte. Mitteilungen der Bundesforschungsanstalt für Forst- und Holzwirtschaft Hamburg, Nr. 215. Wiedebusch, HamburgGoogle Scholar
  30. 30.
    Leek N (2010) Post-consumer wood: in: real potential for changes in growth and use of EU forests. Methodology Report, Hamburg/GermanyGoogle Scholar
  31. 31.
    Merl A, Humar M, Okstad T, Picardo V, Ribeiro A, Steierer F (2007) Amounts of recovered wood in COST E31 countries and Europe. In: Gallis C (ed) 3rd European COST E 31 Conference. Management of recovered wood-reaching a higher technical, economic and environmental standard in Europe. Thessaloniki, University Studio Press, Klagenfurt, AustriaGoogle Scholar
  32. 32.
    Weimar H (2009) Empirische Erhebungen im Holzrohstoffmarkt am Beispiel der neuen Sektoren Altholz und Großfeuerungsanlagen. Sozialwissenschaftliche Schriften zur Forst- und Holzwirtschaft, vol 9. Lang, Frankfurt am MainGoogle Scholar
  33. 33.
    Jochem D, Weimar H, Bösch M, Mantau U, Dieter M (2015) Estimation of wood removals and fellings in Germany: a calculation approach based on the amount of used roundwood. Eur J Forest Res 134(5):869–888CrossRefGoogle Scholar
  34. 34.
    UN (2012) The European forest sector outlook study II, 2010–2030, GenevaGoogle Scholar
  35. 35.
    Goetzl A (2008) Wood for paper: fiber sourcing in the global pulp and paper industry. Forest Trends Potomac ForumGoogle Scholar
  36. 36.
    Buongiorno J (2012) Outlook to 2060 for world forests and forest industries: a technical document supporting Forest Service 2010 RPA assessment. General technical report SRS, vol 151. U.S. Dept. of Agriculture, Forest Service, Southern Research Station, AshevilleGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centre of Wood Science, University of HamburgHamburgGermany
  2. 2.Thünen Institute of International Forestry and Forest EconomicsHamburgGermany

Personalised recommendations