Advertisement

Biorefineries pp 301-337 | Cite as

Pyrolysis Oil Biorefinery

  • Dietrich Meier
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 166)

Abstract

In biorefineries several conversion processes for biomasses may be applied to obtain maximum value from the feed materials. One viable option is the liquefaction of lignocellulosic feedstocks or residues by fast pyrolysis. The conversion technology requires rapid heating of the biomass particles along with rapid cooling of the hot vapors and aerosols. The main product, bio-oil, is obtained in yields of up to 75 wt% on a dry feed basis, together with by-product char and gas which are used within the process to provide the process heat requirements; there are no waste streams other than flue gas and ash. Bio-oils from fast pyrolysis have a great potential to be used as renewable fuel and/or a source for chemical feedstocks. Existing technical reactor designs are presented together with actual examples. Bio-oil characterization and various options for bio-oil upgrading are discussed based on the potential end-use. Existing and potential utilization alternatives for bio-oils are presented with respect to their use for heat and power generation as well as chemical and material use.

Keywords

Applications Bio-oil Fast pyrolysis Pyrolysis reactors Upgrading 

References

  1. 1.
    Carpenter D, Westover TL, Czernik S, Jablonski W (2014) Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem 16(2):384–406. doi: 10.1039/c3gc41631c CrossRefGoogle Scholar
  2. 2.
    Xiu SN, Shahbazi A (2012) Bio-oil production and upgrading research: a review. Renew Sustain Energy Rev 16(7):4406–4414. doi: 10.1016/j.rser.2012.04.028 CrossRefGoogle Scholar
  3. 3.
    Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94. doi: 10.1016/j.biombioe.2011.01.048 CrossRefGoogle Scholar
  4. 4.
    Butler E, Devlin G, Meier D, McDonnell K (2011) A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading. Renew Sust Energ Rev 15(8):4171–4186. doi: 10.1016/j.rser.2011.07.035 CrossRefGoogle Scholar
  5. 5.
    Bulushev DA, Ross JRH (2011) Catalysis for conversion of biomass to fuels via pyrolysis and gasification: a review. Catal Today 171(1):1–13. doi: 10.1016/j.cattod.2011.02.005 CrossRefGoogle Scholar
  6. 6.
    Deng CJ, Liu RH, Cai JM (2008) State of art of biomass fast pyrolysis for bio-oil in China: a review. J Energy Inst 81(4):211–217. doi: 10.1179/174602208X305219 CrossRefGoogle Scholar
  7. 7.
    Babu BV (2008) Biomass pyrolysis: a state-of-the-art review. Biofuels Bioprod Biorefin 2:393–414CrossRefGoogle Scholar
  8. 8.
    Zhang Q, Chang J, Wang T, Xu Y (2007) Review of biomass pyrolysis oil properties and upgrading research. Energy Convers Manag 48(1):87–92. doi: 10.1016/j.enconman.2006.05.010 CrossRefGoogle Scholar
  9. 9.
    Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20(3):848–889. doi: 10.1021/Ef0502397 CrossRefGoogle Scholar
  10. 10.
    Meier D, Faix O (1999) State of the art of applied fast pyrolysis of lignocellulosic materials - a review. Bioresour Technol 68:71–77CrossRefGoogle Scholar
  11. 11.
    Bai X, Brown RC, Fu J, Shanks BH, Kieffer M (2014) The influence of alkali and alkaline earth metals and the role of acid pretreatments in production of sugars from switchgrass based on solvent liquefaction. Energy Fuel 28(2):1111–1120. doi: 10.1021/ef4022015 CrossRefGoogle Scholar
  12. 12.
    Oudenhoven SRG, Westerhof RJM, Aldenkamp N, Brilman DWF, Kersten SRA (2013) Demineralization of wood using wood-derived acid: towards a selective pyrolysis process for fuel and chemicals production. J Anal Appl Pyrolysis 103:112–118. doi: 10.1016/j.jaap.2012.10.002 CrossRefGoogle Scholar
  13. 13.
    Mourant D, Wang Z, He M, Wang XS, Garcia-Perez M, Ling K, Li C-Z (2011) Mallee wood fast pyrolysis: effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil. Fuel 90(9):2915–2922. doi: 10.1016/j.fuel.2011.04.033 CrossRefGoogle Scholar
  14. 14.
    Ma Z, Troussard E, van Bokhoven JA (2012) Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis. Appl Catal A 423–424 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.):130–136. doi: 10.1016/j.apcata.2012.02.027 CrossRefGoogle Scholar
  15. 15.
    Nowakowski DJ, Bridgwater AV, Elliott DC, Meier D, de Wild P (2010) Lignin fast pyrolysis: results from an international collaboration. J Anal Appl Pyrolysis 88(1):53–72CrossRefGoogle Scholar
  16. 16.
    Beis SH, Mukkamala S, Hill N, Joseph J, Baker C, Jensen B, Stemmler EA, Wheeler MC, Frederick BG, Van HA, Berg AG, De SWJ (2010) Fast pyrolysis of lignins. Bioresources 5(3):1408–1424Google Scholar
  17. 17.
    Baumlin S, Broust F, Bazer-Bachi F, Bourdeaux T, Herbinet O, Ndiaye FT, Ferrer M, Lede J (2006) Production of hydrogen by lignins fast pyrolysis. Int J Hydrog Energy 31(15):2179–2192. doi: 10.1016/j.ijhydene.2006.02.016 CrossRefGoogle Scholar
  18. 18.
    Wan S, Wang Y (2014) A review on ex situ catalytic fast pyrolysis of biomass. Front Chem Sci Eng 8(3):280–294. doi: 10.1007/s11705-014-1436-8 CrossRefGoogle Scholar
  19. 19.
    Ruddy DA, Schaidle JA, Ferrell III JR, Wang J, Moens L, Hensley JE (2014) Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: catalyst development through the study of model compounds. Green Chem 16(2):454–490. doi: 10.1039/c3gc41354c CrossRefGoogle Scholar
  20. 20.
    Marker TL, Felix LG, Linck MB, Roberts MJ (2012) Integrated hydropyrolysis and hydroconversion (IH2) for the direct production of gasoline and diesel fuels or blending components from biomass, part 1: proof of principle testing. Environ Prog Sustain Energy 31(2):191–199. doi: 10.1002/Ep.10629 CrossRefGoogle Scholar
  21. 21.
    Lindfors C, Kuoppala E, Oasmaa A, Solantausta Y, Arpiainen V (2014) Fractionation of bio-oil. Energy Fuel 28(9):5785–5791. doi: 10.1021/ef500754d CrossRefGoogle Scholar
  22. 22.
    Brown RC, Jones ST, Pollard A (2013) Bio-oil fractionation and condensation. US PatentGoogle Scholar
  23. 23.
    Westerhof RJM, Brilman DWF, Garcia-Perez M, Wang Z, Oudenhoven SRG, van Swaaij WPM, Kersten SRA (2011) Fractional condensation of biomass pyrolysis vapors. Energy Fuel 25(4):1817–1829. doi: 10.1021/ef2000322 CrossRefGoogle Scholar
  24. 24.
    Elliott DC, Neuenschwander GG, Hart TR (2013) Hydroprocessing bio-oil and products separation for coke production. ACS Sustain Chem Eng 1(4):389–392. doi: 10.1021/Sc300103y CrossRefGoogle Scholar
  25. 25.
    Elliott DC, Hart TR, Neuenschwander GG, Rotness LJ, Olarte MV, Zacher AH, Solantausta Y (2012) Catalytic hydroprocessing of fast pyrolysis bio-oil from pine sawdust. Energy Fuels 26(6):3891–3896. doi: 10.1021/Ef3004587 CrossRefGoogle Scholar
  26. 26.
    Elliott DC (2007) Historical developments in hydroprocessing bio-oils. Energy Fuel 21:1792–1815CrossRefGoogle Scholar
  27. 27.
    Werther J, Hartge E-U, Heinrich S (2014) Fluidized-bed reactors - status and some development perspectives. Chem Ing Technol 86(12):2022–2038. doi: 10.1002/cite.201400117 CrossRefGoogle Scholar
  28. 28.
    Okasha F, Zaater G, El-Emam S, Awad M, Zeidan E (2014) Co-combustion of biomass and gaseous fuel in a novel configuration of fluidized bed: combustion characteristics. Fuel 133:143–152. doi: 10.1016/j.fuel.2014.05.015 CrossRefGoogle Scholar
  29. 29.
    PyNE (2014) http://www.pyne.co.uk/?_id=69. Accessed 22 Dec 2014
  30. 30.
    Meier D, van de Beld B, Bridgwater AV, Elliott DC, Oasmaa A, Preto F (2013) State-of-the-art of fast pyrolysis in IEA bioenergy member countries. Renew Sustain Energy Rev 20:619–641. doi: 10.1016/j.rser.2012.11.061 CrossRefGoogle Scholar
  31. 31.
    Wehlte S, Meier D, Moltran J, Faix O (1997) The impact of wood preservatives on the flash pyrolysis of biomass. In: Bridgwater AV, Boocock DGB (eds) Developments in thermochemical biomass conversion. Chapman & Hall, London, pp. 206–219CrossRefGoogle Scholar
  32. 32.
    Dynamotive (2005) An update on the West Lorne bio-oil project. PyNe Newsletter. Aston University, Birmingham (18), pp 3–4Google Scholar
  33. 33.
  34. 34.
    Solantausta Y, Oasmaa A, Sipila K, Lindfors C, Lehto J, Autio J, Jokela P, Alin J, Heiskanen J (2012) Bio-oil production from biomass: steps toward demonstration. Energy Fuel 26(1):233–240. doi: 10.1021/ef201109t CrossRefGoogle Scholar
  35. 35.
    Valmet (2015) Fortum’s bio-oil plant commissioned in Joensuu. http://www.valmet.com/products/biofuels-and-biomaterials/bio-oil/. Accessed 23 Oct 2015
  36. 36.
    Meier D, Faix O (1998) State of the art of applied fast pyrolysis of lignocellulosic materials - a review. Bioresour Technol 68(1):71–77. doi: 10.1016/S0960-8524(98)00086-8 CrossRefGoogle Scholar
  37. 37.
    Venderbosch RH, Prins W (2010) Fast pyrolysis technology development. Biofuels Bioprod Biorefin 4(2):178–208. doi: 10.1002/bbb.205 CrossRefGoogle Scholar
  38. 38.
    Wagenaar BM (1994) The rotating cone reactor for rapid thermal solids processing. PhD Dissertation, Twente University of TechnologyGoogle Scholar
  39. 39.
    Wagenaar BM, Kuipers JAM, Prins W, Swaaij WPM (1994) The rotating cone flash pyrolysis reactor. In: Bridgwater AV (ed) Adv Thermochem Biomass Convers, [Ed. Rev. Pap. Int. Conf.], 3rd, Meeting Date 1992, vol 2. Blackie, Glasgow, pp 1122–1133Google Scholar
  40. 40.
  41. 41.
    EMPYRO (2014). http://www.empyroproject.eu. Accessed 23 Oct 2015
  42. 42.
    Dahmen N, Dinjus E, Henrich E (2007) Synthesis gas from biomass - problems and solutions en route to technical realization. Oil Gas Eur Mag 33(1/2007):31–34Google Scholar
  43. 43.
    KIT (2015) https://www.ikft.kit.edu/english/255.php. Accessed 8 May 2015
  44. 44.
    Dahmen N, Dinjus E, Kolb T, Arnold U, Leibold H, Stahl R (2012) State of the art of the bioliq (R) process for synthetic biofuels production. Environ Prog Sustain Energy 31(2):176–181. doi: 10.1002/ep.10624 CrossRefGoogle Scholar
  45. 45.
    Kolb T, Eberhard M, Dahmen N, Leibold H, Neuberger M, Sauer J, Seifert H, Zimmerlin B (2013) BtL - the bioliq process at KIT. DGMK Tagungsber 2013–2 (Preprints of the DGMK-Conference “New Technologies and Alternative Feedstocks in Petrochemistry and Refining”, 2013):81–87Google Scholar
  46. 46.
    Dahmen N, Dinjus E, Henrich E (2013) Synthetic fuels from the biomass. In: Renewable energy. Wiley-VCH Verlag GmbH & Co. KGaA, pp 83–87. doi: 10.1002/9783527671342.ch13 CrossRefGoogle Scholar
  47. 47.
    Dahmen N, Dinjus E, Henrich E (2012) The Karlsruhe bioliq process. Synthetic fuels from biomass. In: Wiley-VCH Verlag GmbH & Co. KGaA, pp 83–87Google Scholar
  48. 48.
    Lédé J, Li HZ, Villermaux J (1987) Fusion-like behaviour of wood pyrolysis. J Anal Appl Pyrolysis 10:291–308CrossRefGoogle Scholar
  49. 49.
    Martin H, Lede J, Li Z, Villermaux J, Moyne C, Degiovanni A (1986) Ablative melting of a solid cylinder perpendiculary pressed against a heated wall. Int J Heat Mass Transf 29(9):1407–1415CrossRefGoogle Scholar
  50. 50.
    Lédé J, Panagopoulos J, Li HZ, Villermaux J (1985) Fast pyrolysis of wood - direct measurement and study of ablation rate. Fuel 64(11):1514–1520CrossRefGoogle Scholar
  51. 51.
    Boutin O, Kiener P, Li HZ, Lédé J (1997) Temperature of ablative pyrolysis of wood. Comparison of spinning disk and rotating cylinder experiments. In: Kaltschmitt M, Bridgwater AV (eds) Biomass gasification and pyrolysis. State of the art and future perspectivs. CPL Press, Newbury, pp. 336–344Google Scholar
  52. 52.
    Lédé J, Broust F, Ndiaye F-T, Ferrer M (2007) Properties of bio-oils produced by biomass fast pyrolysis in a cyclone reactor. Fuel 86(12–13):1800–1810. doi: 10.1016/j.fuel.2006.12.024 CrossRefGoogle Scholar
  53. 53.
    Bramer EA, Brem G (2003) A new technology for fast pyrolysis of biomass, development of the PyRos reactor. In: Bridgwater A (ed) Pyrolysis and gasification of biomass and waste. CPL Press, Newbury, pp. 63–73Google Scholar
  54. 54.
    Lede J (2000) The cyclone: a multifunctional reactor for the fast pyrolysis of biomass. Ind Eng Chem Res 39(4):893–903. doi: 10.1021/ie990623p CrossRefGoogle Scholar
  55. 55.
    Bech N, Larsen MB, Jensen PA, Dam-Johansen K (2009) Modelling solid-convective flash pyrolysis of straw and wood in the pyrolysis centrifuge reactor. Biomass Bioenergy 33(6–7):999–1011. doi: 10.1016/j.biombioe.2009.03.009 CrossRefGoogle Scholar
  56. 56.
    Trinh TN, Jensen PA, Dam-Johansen K, Knudsen NO, Soerensen HR, Hvilsted S (2013) Comparison of lignin, macroalgae, wood, and straw fast pyrolysis. Energy Fuel 27(3):1399–1409. doi: 10.1021/ef301927y CrossRefGoogle Scholar
  57. 57.
    Ashcraft RW, Heynderickx GJ, Marin GB (2012) Modeling fast biomass pyrolysis in a gas-solid vortex reactor. Chem Eng J 207–208:195–208. doi: 10.1016/j.cej.2012.06.048 CrossRefGoogle Scholar
  58. 58.
    Schöll S, Klaubert H, Meier D (2006) Bio-oil from a new ablative pyrolyser. In: Bridgwater AV, Boocock DGB (eds) Science in thermal and chemical biomass conversion, vol 2. CPL Press, Newbury, pp. 1372–1378Google Scholar
  59. 59.
    Meier D, Schöll S, Klaubert H, Markgraf J (2006) Betriebsergebnisse der ersten BTO-Anlage zur ablativen Flash-Pyrolyse von Holz mit Energiegewinnung in einem BHKW. In: DGMK-Fachbereichstagung “Energetische Nutzung von Biomassen”, Velen, 2006. DGMK, Hamburg, DM 164, pp 115–120Google Scholar
  60. 60.
    Schöll S, Klaubert H, Meier D (2004) Holzverflüssigung durch Flash-Pyrolyse mit einem neuartigen ablativen Pyrolysator. In: DGMK (ed) DGMK-Fachbereichstagung “Energetische Nutzung von Biomassen”, Velen, 19–21, April 2004. DGMK, Hamburg, DM 136, pp 47–54Google Scholar
  61. 61.
    PyNE (2014) Reactors. http://www.pyne.co.uk/?_id=69. Accessed 23 Dec 2014
  62. 62.
    Apfelbacher A, Conrad S, Schulzke T (2014) Ablative fast pyrolysis-potential for cost effective conversion of agricultural residues. Environ Prog Sustain Energy 33(3):669–675. doi: 10.1002/Ep.12017 CrossRefGoogle Scholar
  63. 63.
    Meier D, Schöll S, Klaubert H, Markgraf J (2007) Practical results from PYTEC’s biomass-to-oil (BTO) pocess with ablaive pyrolyser and diesel CHP plant. In: Bridgwater AV (ed) Bio€ - success and visions for bioenergy. CPL Scientific Publishing Service Ltd, Newbury, pp. 1–5Google Scholar
  64. 64.
    Schulzke T, Apfelbacher A, Conrad S (2014) Development of a mobile flash pyrolysis unit for herbaceous crop residues (straw). In: DGMK (ed) DGMK-Fachbereichstagung “Konversion von Biomassen”, Rotenburg a.d. Fulda. DGMK, Hamburg, pp 41–48Google Scholar
  65. 65.
    Yang J, Blanchette D, de Caumia B, Roy C (2001) Modelling, scale-up and demonstration of a vacuum pyrolysis reactor. In: Bridgwater AV (ed) Progress in thermochemical biomass conversion, vol 2. Blackwell Science, Oxford, pp. 1296–1311CrossRefGoogle Scholar
  66. 66.
    Roy C, Morin D, Dube F (1997) The biomass pyrocycling process. In: Kaltschmitt M, Bridgwater AV (eds) Biomass gasification and pyrolysis: state of the art and future prospects. CPL Press, Newbury, pp. 307–315Google Scholar
  67. 67.
    Gagnon M, Roy C, Riedl B (2004) Adhesives made from isocyanates and pyrolysis oils for wood composites. Holzforschung 58(4):400–407. doi: 10.1515/HF.2004.060 CrossRefGoogle Scholar
  68. 68.
    Chan FD, Rield B, Wang X-M, Roy C, Lu X, Amen-Chen C (2000) Wood adhesives from pyrolysis oil for OSB. In: Wood adhesives 2000, 7th International Symposium S. Lake Tahoe, NV, United States, 2000. Forest Products Society, pp 125–132Google Scholar
  69. 69.
    Roy C, Calve L, Lu X, Pakdel H, Amen-Chen C (1999) Wood composite adhesives from softwood bark-derived vacuum pyrolysis oils. In: Overend RP, Chornet E (eds) Biomass, Proc. Biomass Conf. Am. 4th, vol 1. Elsevier Science, Oxford, pp 521–526Google Scholar
  70. 70.
    Meier D, Windt M (2014) Analysis of bio-oils. In: Hornung A (ed) Transformation of biomass-theory to practice. Wiley, Chichester, pp. 227–256Google Scholar
  71. 71.
    Lehto J, Oasmaa A, Solanausta Y, Kytö M, Chiaramonti D (2013) Fuel oil quality and combustion of fast pyrolysis bio-oils. VTT Technical Research Centre of Finland, Espoo, FinlandGoogle Scholar
  72. 72.
    Oasmaa A, Korhonen J, Kuoppala E (2011) An approach for stability measurement of wood-based fast pyrolysis bio-oils. Energy Fuel 25(7):3307–3313. doi: 10.1021/ef2006673 CrossRefGoogle Scholar
  73. 73.
    Oasmaa A, Kuoppala E, Selin J-F, Gust S, Solantausta Y (2004) Fast pyrolysis of forestry residue and pine. 4. Improvement of the product quality by solvent addition. Energy Fuel 18(5):1578–1583. doi: 10.1021/ef040038n CrossRefGoogle Scholar
  74. 74.
    Diebold JP, Czernik S (1997) Additives to lower and stabilize the viscosity of pyrolysis oils during storage. Energy Fuel 11(5):1081–1091CrossRefGoogle Scholar
  75. 75.
    Oasmaa A, Kuoppala E (2003) Fast pyrolysis of forestry residue. 3. Storage stability of liquid fuel. Energy Fuel 17(4):1075–1084CrossRefGoogle Scholar
  76. 76.
    Blin J, Volle G, Girard P, Bridgwater T, Meier D (2007) Biodegradability of biomass pyrolysis oils: comparison to conventional petroleum fuels and alternatives fuels in current use. Fuel 86:2679–2686CrossRefGoogle Scholar
  77. 77.
    Diebold JP (1997) A review of the toxicity of biomass pyrolysis liquids formed at low temperatures. NREL/Tp-430-22739Google Scholar
  78. 78.
    Lehto J, Oasmaa A, Solantausta Y, Kyto M, Chiaramonti D (2014) Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass. Appl Energy 116:178–190. doi: 10.1016/j.apenergy.2013.11.040 CrossRefGoogle Scholar
  79. 79.
    Lehto J, Oasmaa A, Solantausta Y, Kyto M, Chiaramonti D (2013) Fuel oil quality and combustion of fast pyrolysis bio-oils. VTT Technical Research Centre of Finland, Espoo, FinlandGoogle Scholar
  80. 80.
    PyNE (2006) Pyrolysis oil combustion tests in an industrial boiler. http://www.pyne.co.uk/?_id=4. Accessed 23 Oct 2015
  81. 81.
    Oasmaa A, Peacocke C, Gust S, Meier D, McLellan R (2005) Norms and standards for pyrolysis liquids. End-user requirements and specifications. Energy Fuel 19:2155–2163CrossRefGoogle Scholar
  82. 82.
    CEN (2015) http://www.biofuelstp.eu/biofuels-standards.html. Accessed 23 Oct 2015
  83. 83.
    Heidenreich S (2013) Hot gas filtration - a review. Fuel 104:83–94. doi: 10.1016/j.fuel.2012.07.059 CrossRefGoogle Scholar
  84. 84.
    Baldwin RM, Feik CJ (2013) Bio-oil stabilization and upgrading by hot gas filtration. Energy Fuel 27(6):3224–3238. doi: 10.1021/ef400177t CrossRefGoogle Scholar
  85. 85.
    Scahill J, Diebold JP, Feik C (1997) Removal of residual char fines from pyrolysis vapors by hot gas filtration. In: Bridgwater AV, Boocock DGB (eds) Developments in thermochemical biomass conversion, vol 1. Blackie, London, pp. 253–266. doi: 10.1007/978-94-009-1559-6_19 CrossRefGoogle Scholar
  86. 86.
    Oasmaa A, Sipilä K, Solantausta Y, Kuoppala E (2005) Quality improvement of pyrolysis liquid: effect of light volatiles on the stability of pyrolysis liquids. Energy Fuel 19(6):2556–2561CrossRefGoogle Scholar
  87. 87.
    Pollard AS, Rover MR, Brown RC (2012) Characterization of bio-oil recovered as stage fractions with unique chemical and physical properties. J Anal Appl Pyrolysis 93 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.):129–138. doi: 10.1016/j.jaap.2011.10.007 CrossRefGoogle Scholar
  88. 88.
    Conrad S, Apfelbacher A, Schulzke T (2014) Fractionated condensation of pyrolysis vapours from ablative flash pyrolysis. Papers of the 22nd European Biomass Conference: Setting the Course for a Biobased Economy, pp 1127–1133Google Scholar
  89. 89.
    Ikura M, Mirmiran S, Stanciulescu M, Sawatzky H (1998) Pyrolysis liquid-in-diesel oil microemulsions. USA PatentGoogle Scholar
  90. 90.
    Hernandez JF, Morla JC (2003) Fuel emulsions using biomass pyrolysis products as an emulsifier agent. Energy Fuel 17(2):302–307CrossRefGoogle Scholar
  91. 91.
    Chiaramonti D, Bonini A, Fratini E, Tondi G, Gartner K, Bridgwater AV, Grimm HP, Soldaini I, Webster A, Baglioni P (2003) Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines - part 1: emulsion production. Biomass Bioenergy 25(1):85–99CrossRefGoogle Scholar
  92. 92.
    Chiaramonti D, Bonini A, Fratini E, Tondi G, Gartner K, Bridgwater AV, Grimm HP, Soldaini I, Webster A, Baglioni P (2003) Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines - part 2: tests in diesel engines. Biomass Bioenergy 25:101–111CrossRefGoogle Scholar
  93. 93.
    Alcala A, Bridgwater AV (2013) Upgrading fast pyrolysis liquids: blends of biodiesel and pyrolysis oil. Fuel 109:417–426. doi: 10.1016/j.fuel.2013.02.058 CrossRefGoogle Scholar
  94. 94.
    Hilten RN, Bibens BP, Kastner JR, Das KC (2009) In-line esterification of pyrolysis vapor with ethanol improves bio-oil quality. Energy Fuel 24(1):673–682. doi: 10.1021/ef900838g CrossRefGoogle Scholar
  95. 95.
    Tanneru SK, Parapati DR, Steele PH (2014) Pretreatment of bio-oil followed by upgrading via esterification to boiler fuel. Energy 73:214–220. doi: 10.1016/j.energy.2014.06.039 CrossRefGoogle Scholar
  96. 96.
    Xu J, Jiang J, Dai W, Zhang T, Xu Y (2011) Bio-oil upgrading by means of ozone oxidation and esterification to remove water and to improve fuel characteristics. Energy Fuel 25(4):1798–1801. doi: 10.1021/ef101726g CrossRefGoogle Scholar
  97. 97.
    Wang JJ, Chang J, Fan JA (2010) Upgrading of bio-oil by catalytic esterification and determination of acid number for evaluating esterification degree. Energy Fuels 24:3251–3255. doi: 10.1021/Ef1000634 CrossRefGoogle Scholar
  98. 98.
    Xu XM, Zhang CS, Zhai YP, Liu YG, Zhang RQ, Tang XY (2014) Upgrading of bio-oil using supercritical 1-butanol over a Ru/C heterogeneous catalyst: role of the solvent. Energy Fuels 28(7):4611–4621. doi: 10.1021/Ef500968a CrossRefGoogle Scholar
  99. 99.
    Ying X, Wang T, Ma L, Chen G (2012) Upgrading of fast pyrolysis liquid fuel from biomass over Ru/γ-Al2O3 catalyst. Energy Convers Manage 55 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved):172–177. doi: 10.1016/j.enconman.2011.10.016 CrossRefGoogle Scholar
  100. 100.
    Xu Y, Hu X, Li C, Zhou S, Zhu X (2011) Study on upgrading bio-oil by ethanol catalytic esterification with solid super base. Taiyangneng Xuebao 32 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved), pp 1361–1364Google Scholar
  101. 101.
    Xu Y, Wang TJ, Ma LL, Zhang Q, Liang W (2010) Upgrading of the liquid fuel from fast pyrolysis of biomass over MoNi/gamma-Al2O3 catalysts. Appl Energy 87(9):2886–2891. doi: 10.1016/j.apenergy.2009.10.028 CrossRefGoogle Scholar
  102. 102.
    Xu JM, Jiang JC, Sun YJ, Lu YJ (2008) Bio-oil upgrading by means of ethyl ester production in reactive distillation to remove water and to improve storage and fuel characteristics. Biomass Bioenergy 32(11):1056–1061. doi: 10.1016/j.biombioe.2008.02.002 CrossRefGoogle Scholar
  103. 103.
    Mercader FM, Groeneveld MJ, Kersten SRA, Venderbosch RH, Hogendoorn JA (2010) Pyrolysis oil upgrading by high pressure thermal treatment. Fuel 89:2829–2837. doi: 10.1016/j.fuel.2010.01.026 CrossRefGoogle Scholar
  104. 104.
    Huber GW, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Ed 46(38):7184–7201. doi: 10.1002/Anie.200604504 CrossRefGoogle Scholar
  105. 105.
    Bridgwater AV (1996) Production of high grade fuels and chemicals from catalytic pyrolysis of biomass. Catal Today 29(1–4):285–295CrossRefGoogle Scholar
  106. 106.
    Bridgwater AV (1994) Catalysis in thermal biomass conversion. Appl Catal A Gen 116(1–2):5–47CrossRefGoogle Scholar
  107. 107.
    Lindauer A (2012) Technology Pathway Selection Effort. http://www.energy.gov/sites/prod/files/2014/03/f14/lindauer_caafi_workshop.pdf. Accessed 13 May 2015
  108. 108.
    Al-Sabawi M, Chen JW (2012) Hydroprocessing of biomass-derived oils and their blends with petroleum feedstocks: a review. Energy Fuel 26(9):5373–5399. doi: 10.1021/ef3006405 CrossRefGoogle Scholar
  109. 109.
    Liu C, Wang H, Karim AM, Sun J, Wang Y (2014) Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev 43(22):7594–7623. doi: 10.1039/C3CS60414D CrossRefGoogle Scholar
  110. 110.
    Frankiewicz TC (1982) Converting oxygenated hydrocarbons into hydrocarbonsGoogle Scholar
  111. 111.
    Frankiewicz TC (1980) The conversion of biomass-derived pyrolytic vapors to hydrocarbons. Occidental Res. CorpGoogle Scholar
  112. 112.
    Diebold J, Scahill J (1988) Biomass to gasoline. Upgrading pyrolysis vapors to aromatic gasoline with zeolite catalysis at atmospheric pressure. ACS Symp Ser 376:264–276CrossRefGoogle Scholar
  113. 113.
    Iisa K, Stanton AR, Nimlos M (2014) Catalyst deactivation in ex situ and in situ catalytic fast pyrolysis of biomass. In: 248th ACS National Meeting & Exposition, San Francisco, CA, United States, August 10–14, 2014. American Chemical Society, p ENFL-138Google Scholar
  114. 114.
    Wang L, Lei H, Bu Q, Ren S, Wei Y, Zhu L, Zhang X, Liu Y, Yadavalli G, Lee J, Chen S, Tang J (2014) Aromatic hydrocarbons production from ex situ catalysis of pyrolysis vapor over zinc modified ZSM-5 in a packed-bed catalysis coupled with microwave pyrolysis reactor. Fuel 129:78–85. doi: 10.1016/j.fuel.2014.03.052 CrossRefGoogle Scholar
  115. 115.
    Envergent (2015) http://www.envergenttech.com. Accessed 23 Oct 2015
  116. 116.
    KIOR (2015) http://www.kior.com. Accessed 23 Oct 2015
  117. 117.
  118. 118.
    Anellotech (2015) http://www.anellotech.com. Accessed 23 Oct 2015
  119. 119.
    Foster AJ, Jae J, Cheng Y-T, Huber GW, Lobo RF (2012) Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Appl Catal A 423–424:154–161. doi: 10.1016/j.apcata.2012.02.030 CrossRefGoogle Scholar
  120. 120.
    Cheng Y-T, Wang Z, Gilbert CJ, Fan W, Huber GW (2012) Production of p-xylene from biomass by catalytic fast pyrolysis using ZSM-5 catalysts with reduced pore openings. Angew Chem Int Ed 51(44):11097–11100. doi: 10.1002/anie.201205230 CrossRefGoogle Scholar
  121. 121.
    Zhang H, Cheng Y-T, Vispute TP, Xiao R, Huber GW (2011) Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio. Energy Environ Sci 4(6):2297–2307. doi: 10.1039/c1ee01230d CrossRefGoogle Scholar
  122. 122.
    Jae J, Tompsett GA, Foster AJ, Hammond KD, Auerbach SM, Lobo RF, Huber GW (2011) Investigation into the shape selectivity of zeolite catalysts for biomass conversion. J Catal 279(2):257–268. doi: 10.1016/j.jcat.2011.01.019 CrossRefGoogle Scholar
  123. 123.
    Huber GW, Jae J, Vispute T, Carlson T, Tompsett G, Cheng Y-T (2009) Catalytic pyrolysis of solid biomass and related biofuels, aromatic, and olefin compounds. US PatentGoogle Scholar
  124. 124.
    Carlson TR, Tompsett GA, Conner WC, Huber GW (2009) Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Top Catal 52(3):241–252. doi: 10.1007/s11244-008-9160-6 CrossRefGoogle Scholar
  125. 125.
    Carlson TR, Vispute TP, Huber GW (2008) Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. ChemSusChem 1(5):397–400. doi: 10.1002/cssc.200800018 CrossRefGoogle Scholar
  126. 126.
    Cheng Y-T, Jae J, Shi J, Fan W, Huber GW (2012) Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts. Angew Chem 124(6):1416–1419. doi: 10.1002/ange.201107390 CrossRefGoogle Scholar
  127. 127.
    Radlein D, Quignard A (2013) A short historical review of fast pyrolysis of biomass. Oil Gas Sci Technol Rev IFP Energies Nouvelles 68(4):765–783. doi: 10.2516/ogst/2013162 CrossRefGoogle Scholar
  128. 128.
    PyNE (2015) Bio-oil hydroprocessing. http://ww.pyne.co.uk/?_id=131-quick-1. Accessed 22 Oct 2015
  129. 129.
    Zacher AH, Olarte MV, Santosa DM, Elliott DC (2014) A review and perspective of recent bio-oil hydrotreating research. Green Chem 16:491–515CrossRefGoogle Scholar
  130. 130.
    Traynor T, Brandvold TA (2012) Methods for producing low oxyygen biomass-derived pyrolysis oils. USA PatentGoogle Scholar
  131. 131.
    Traynor T, Brandvold TA (2012) Methods for producing low oxygen biomass-derived pyrolysis oilsGoogle Scholar
  132. 132.
    Radlein D, Wang J, Yuan Y, Quignard A (2012) Methods of upgrading biooil to transportation grade hydrocarbon fuelsGoogle Scholar
  133. 133.
    No S-Y (2014) Application of bio-oils from lignocellulosic biomass to transportation, heat and power generation-a review. Renew Sust Energ Rev 40:1108–1125. doi: 10.1016/j.rser.2014.07.127 CrossRefGoogle Scholar
  134. 134.
    Khodier A, Kilgallon P, Legrave N, Simms N, Oakey J, Bridgwater T (2009) Pilot-scale combustion of fast-pyrolysis bio-oil: ash deposition and gaseous emissions. Environ Prog Sustain Energy 28(3):397–403. doi: 10.1002/ep.10379 CrossRefGoogle Scholar
  135. 135.
    Wornat MJ, Porter BG, Yang NYC (1994) Single droplet combustion of biomass pyrolysis oils. Energy Fuel 8(5):1131–1142CrossRefGoogle Scholar
  136. 136.
    Czernik S, Johnson DK, Black S (1994) Stability of wood fast pyrolysis oil. Biomass Bioenergy 7(1–6):187–192CrossRefGoogle Scholar
  137. 137.
    PyNE (I) (2014) http://ww.pyne.co.uk/?_id=127. Accessed 30 Dec 2014
  138. 138.
    PyNE (2015) Combustion in diesel engines. http://ww.pyne.co.uk/?_id=129. Accessed 14 May 2015
  139. 139.
    van de Beld L, Florijn J, Holle E (2013) The use of pyrolysis oil and pyrolysis oil derived fuels in diesel engines for CHP applications. Appl Energy 102:190–197CrossRefGoogle Scholar
  140. 140.
    Chiaramonti D, Oasmaa A, Solantausta Y (2007) Power generation using fast pyrolysis liquids from biomass. Renew Sustain Energy Rev 11(6):1056–1086CrossRefGoogle Scholar
  141. 141.
    Jay DC, Rantanen OA, Sipilä KH, Nylund NO (1995) Wood pyrolysis oil for diesel engines. In: ASME1995 fall technical conference, Milwaukee, 24–27 Sept 1995Google Scholar
  142. 142.
    PyNE (2015) Combustion in gas turbines. http://ww.pyne.co.uk/?_id=128. Accessed 14 May 2015
  143. 143.
    Andrews RG, Zukowski S, Patnaik PC (1997) Feasibility of firing an industrial gas turbine using a biomass derived fuel, vol. 1. Developments in thermochemical biomass conversion. Blackie Academic, LondonGoogle Scholar
  144. 144.
    Dahmen N, Dinjus E, Henrich E (2012) Synthetic fuels from the biomass. In: Renewable energy: sustainable concepts for the energy change, 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, pp 83–87. doi: 10.1002/9783527671342.ch13 CrossRefGoogle Scholar
  145. 145.
    Chang C-C, Wu S-R, Lin C-C, Wan H-P, Lee H-T (2012) Fast pyrolysis of biomass in pyrolysis gas: fractionation of pyrolysis vapors using a spray of bio-oil. Energy Fuel 26(5):2962–2967. doi: 10.1021/ef201858h CrossRefGoogle Scholar
  146. 146.
    Tumbalam Gooty A, Li D, Briens C, Berruti F (2014) Fractional condensation of bio-oil vapors produced from birch bark pyrolysis. Sep Purif Technol 124:81–88. doi: 10.1016/j.seppur.2014.01.003 CrossRefGoogle Scholar
  147. 147.
    Caceres LA, McGarvey BD, Briens C, Berruti F, Yeung KKC, Scott IM (2015) Insecticidal properties of pyrolysis bio-oil from greenhouse tomato residue biomass. J Anal Appl Pyrolysis 112:333–340. doi: 10.1016/j.jaap.2015.01.003 CrossRefGoogle Scholar
  148. 148.
    Theobald A, Arcella D, Carere A, Croera C, Engel KH, Gott D, Gurtler R, Meier D, Pratt I, Rietjens IMCM, Simon R, Walker R (2012) Safety assessment of smoke flavouring primary products by the European Food Safety Authority. Trends Food Sci Technol 27(2):97–108. doi: 10.1016/J.Tifs.2012.06.002 CrossRefGoogle Scholar
  149. 149.
    Meier D (2011) Flüssiger Rauch - Eine Herausforderung für die Analyse. J Culinaire 13:68–73Google Scholar
  150. 150.
    Longley CJ, Howard J, Fung DPC (1994) Levoglucosan recovery from cellulose and wood pyrolysis liquids. In: Bridgwater AV (ed) Adv Thermochem Biomass Convers [Ed. Rev. Pap. Int. Conf.], 3rd, Meeting Date 1992, vol 2. Blackie, London, pp 1441–1451Google Scholar
  151. 151.
    Longley CJ, Fung DP (1994) Potential applications and markets for biomass-derived levoglucosan, vol 2. Adv Thermochem Biomass Convers [Ed. Rev. Pap. Int. Conf.], 3rd, Meeting Date 1992. BlackieGoogle Scholar
  152. 152.
    Witczak ZJ (1994) Levoglucosenone and levoglucosans - chemistry and applications. ATL Press, Mount Prospect, ILGoogle Scholar
  153. 153.
    Srinivasan V, Adhikari S, Chattanathan SA, Tu M, Park S (2014) Catalytic pyrolysis of raw and thermally treated cellulose using different acidic zeolites. Bioenergy Res 7(3):867–875. doi: 10.1007/s12155-014-9426-8 CrossRefGoogle Scholar
  154. 154.
    Li Q, Steele PH, Yu F, Mitchell B, Hassan E-BM (2013) Pyrolytic spray increases levoglucosan production during fast pyrolysis. J Anal Appl Pyrolysis 100:33–40. doi: 10.1016/j.jaap.2012.11.013 CrossRefGoogle Scholar
  155. 155.
    Scholze B, Hanser C, Meier D (2001) Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin). Part II. GPC, carbonyl groups, and 13C-NMR. J Anal Appl Pyrolysis 58-59:387–400CrossRefGoogle Scholar
  156. 156.
    Scholze B, Meier D (2001) Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin). Part I. Py-GC/MS, FTIR, and functional groups. J Anal Appl Pyrolysis 60:41–54CrossRefGoogle Scholar
  157. 157.
    Bayerbach R, Nguyen VD, Schurr U, Meier D (2006) Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin). Part III. Molar mass characteristics by SEC, MALDI-TOF-MS, LDI-TOF-MS, and Py-FIMS. J Anal Appl Pyrolysis 77:95–101CrossRefGoogle Scholar
  158. 158.
    Bayerbach R, Meier D (2008) Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin). Part IV. Structure elucidation of oligomeric molecules. J Anal Appl Pyrolysis 85:98–107. doi: 10.1016/j.jaap.2008.10.021 CrossRefGoogle Scholar
  159. 159.
    Zhao Y, Deng L, Liao B, Fu Y, Guo QX (2010) Aromatics production via catalytic pyrolysis of pyrolytic lignins from bio-oil. Energy Fuel 24:5735–5740. doi: 10.1021/ef100896q CrossRefGoogle Scholar
  160. 160.
    Meng J, Moore A, Tilotta D, Kelley S, Park S (2014) Toward understanding of bio-oil aging: accelerated aging of bio-oil fractions. ACS Sustain Chem Eng 2(8):2011–2018. doi: 10.1021/sc500223e CrossRefGoogle Scholar
  161. 161.
    French RJ, Black SK, Myers M, Stunkel J, Gjersing E, Iisa K (2015) Hydrotreating the organic fraction of biomass pyrolysis oil to a refinery intermediate. Energy Fuel 29(12):7985–7992. doi: 10.1021/acs.energyfuels.5b01440 CrossRefGoogle Scholar
  162. 162.
    Kloekhorst A, Wildschut J, Heeres HJ (2014) Catalytic hydrotreatment of pyrolytic lignins to give alkylphenolics and aromatics using a supported Ru catalyst. Catal Sci Technol 4(8):2367–2377. doi: 10.1039/C4CY00242C CrossRefGoogle Scholar
  163. 163.
    Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuel 18(2):590–598CrossRefGoogle Scholar
  164. 164.
    Sukhbaatar B, Steele PH, Kim MG (2009) Use of lignin separated from bio-oil in oriented strand board binder phenol-formaldehyde resins. Bioresources 4(2):789–804Google Scholar
  165. 165.
    Chan F, Riedl B, Wang XM, Lu X, Amen-Chen C, Roy C (2002) Performance of pyrolysis oil-based wood adhesives in OSB. For Prod J 52(4):31–38Google Scholar
  166. 166.
    Roy C, Calve L, Lu X, Pakdel H, Amen-Chen C (1999) Wood composite adhesives from softwood bark-derived vacuum pyrolysis oils. Elsevier Science, pp 521–526Google Scholar
  167. 167.
    Amen-Chen C, Riedl B, Wang XM, Roy C (2002) Softwood bark pyrolysis oil-PF resols part 1. Resin synthesis and OSB mechanical properties. Holzforschung 56(2):167–175CrossRefGoogle Scholar
  168. 168.
    Amen-Chen C, Pakdel H, Roy C (2001) Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresour Technol 79(3):277–299CrossRefGoogle Scholar
  169. 169.
    Panagiotis N (1998) Binders for the wood industry made with pyrolysis oil. Newsletter of the PyNe-Network 6, Aston University, Birmingham, pp 6–7Google Scholar
  170. 170.
    Wei Y, Lei H, Wang L, Zhu L, Zhang X, Liu Y, Chen S, Ahring B (2014) Liquid-liquid extraction of biomass pyrolysis bio-oil. Energy Fuel 28(2):1207–1212. doi: 10.1021/ef402490s CrossRefGoogle Scholar
  171. 171.
    Vitasari CR, Meindersma GW, de Haan AB (2012) Glycolaldehyde co-extraction during the reactive extraction of acetic acid with tri-n-octylamine/2-ethyl-1-hexanol from a wood-based pyrolysis oil-derived aqueous phase. Sep Purif Technol 95:39–43. doi: 10.1016/j.seppur.2012.04.016 CrossRefGoogle Scholar
  172. 172.
    Naik S, Goud VV, Rout PK, Dalai AK (2010) Supercritical CO2 fractionation of bio-oil produced from wheat-hemlock biomass. Bioresour Technol 101(19):7605–7613CrossRefGoogle Scholar
  173. 173.
    Rout PK, Naik MK, Naik SN, Goud VV, Das LM, Dalai AK (2009) Supercritical CO2 fractionation of bio-oil produced from mixed biomass of wheat and wood sawdust. Energy Fuel 23(12):6181–6188. doi: 10.1021/ef900663a CrossRefGoogle Scholar
  174. 174.
    Feng Y, Meier D (2015) Extraction of value-added chemicals from pyrolysis liquids with supercritical carbon dioxide. J Anal Appl Pyrolysis 113:174–185. doi: 10.1016/j.jaap.2014.12.009 CrossRefGoogle Scholar
  175. 175.
    PyNE (2015) Materials and Products. http://www.pyne.co.uk/?_id=133. Accessed 10 May 2015
  176. 176.
    Branca C, Galgano A, Blasi C, Esposito M, Di Blasi C (2010) H2SO4-catalyzed pyrolysis of corncobs. Energy Fuel 25(1):359–369. doi: 10.1021/ef101317f CrossRefGoogle Scholar
  177. 177.
    Vlachos D, Chen J, Gorte R, Huber G, Tsapatsis M (2010) Catalysis center for energy innovation for biomass processing: research strategies and goals. Catal Lett 140(3–4):77–84. doi: 10.1007/s10562-010-0455-4 CrossRefGoogle Scholar
  178. 178.
    Jong ED, Higson A, Walsh P, Wellisch M (2012) Bio-based chemicals-value added products from biorefineries. International Energy Agency (IEA)Google Scholar

Copyright information

© Springer International Publishing AG  2017

Authors and Affiliations

  1. 1.Thermophil internationalHamburgGermany

Personalised recommendations