Biomass Resources: Agriculture

  • Ingeborg N. Kluts
  • Marnix L. J. BrinkmanEmail author
  • Sierk A. de Jong
  • H. Martin Junginger
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 166)


Bioenergy is the single largest source of renewable energy in the European Union (EU-28); of this, 14% was produced from agricultural feedstocks in 2012. This chapter provides an overview of the current use (for bioenergy) and future potential of agricultural feedstocks for (amongst others) biorefinery purposes in the European Union. The main application of these feedstocks is currently the production of biofuels for road transport. Biodiesel makes up 80% of the European biofuel production, mainly from rapeseed oil, and the remaining part is bioethanol from wheat and sugar beet. Dedicated woody and grassy crops (mainly miscanthus and switchgrass) are currently only used in very small quantities for heat and electricity generation. There is great potential for primary agricultural residues (mainly straw) but currently only part of this is for heat and electricity generation. Agricultural land currently in use for energy crop cultivation in the EU-28 is 4.4 Mio ha, although the land area technically available in 2030 is estimated to be 16–43 Mio ha, or 15–40% of the current arable land in the EU-28. There is, however, great uncertainty on the location and quality of that land. It is expected that woody and grassy crops together with primary agricultural residues should become more important as agricultural feedstocks.


Agricultural feedstock Energy crops Energy potential Primary agricultural residues Straw 


  1. 1.
    EUROSTAT (2015) Supply, transformation and consumption of renewable energies - annual data [nrg_107a]. Accessed 22 Sep 2015
  2. 2.
    Scarlat N, Dallemand J-F, Monforti-Ferrario F, et al. (2015) Renewable energy policy framework and bioenergy contribution in the European Union – an overview from National Renewable Energy Action Plans and Progress Reports. Renew Sust Energ Rev 51:969–985. doi: 10.1016/j.rser.2015.06.062 CrossRefGoogle Scholar
  3. 3.
    European Commission (2015) Agriculture and bioenergy. Accessed 24 Sep 2015
  4. 4.
    Long SP, Karp A, Buckeridge MS, et al. (2015) Chapter 10: feedstocks for biofuels and bioenergy. In: Souza GM, Victoria R, Joly C, Verdade L (eds) Bioenergy & sustainabilty: bridging the gaps, vol 72. SCOPE, Paris, pp. 302–346Google Scholar
  5. 5.
    Elbersen B, Startisky I, Hengeveld G et al (2012) Atlas of EU biomass potentials. Deliverable 3.3 of Biomass Futures project. Wageningen, The NetherlandsGoogle Scholar
  6. 6.
    European Biomass Association (AEBIOM) (2014) European Bioenergy Outlook 2014. Brussels, BelgiumGoogle Scholar
  7. 7.
    EUROSTAT (2015) Primary production - all products - annual data [nrg_109a]. Accessed 25 Sep 2015
  8. 8.
    Hamelinck C, Koper M, Janeiro L et al (2014) Renewable energy progress and biofuels sustainability. Ecofys, UtrechtGoogle Scholar
  9. 9.
    Scarlat N, Martinov M, Dallemand J-F (2010) Assessment of the availability of agricultural crop residues in the European Union: potential and limitations for bioenergy use. Waste Manag 30:1889–1897. doi: 10.1016/j.wasman.2010.04.016 CrossRefGoogle Scholar
  10. 10.
    Kretschmer B, Allen B, Hart K (2012) Mobilising cereal straw in the EU to feed advanced biofuel production. IEEP, LondonGoogle Scholar
  11. 11.
    Spöttle M, Alberici S, Toop G et al (2013) Low ILUC potential of wastes and residues for biofuels: straw, forestry residues, UCO, corn cobs. Ecofys, UtrechtGoogle Scholar
  12. 12.
    Böttcher H, Dees M, Fritz SM et al (2010) Biomass Energy Europe - Illustration Case for Europe. Deliverable 6.1- Annex 1 of Biomass Energy Europe. IIASA, LaxenburgGoogle Scholar
  13. 13.
    Daioglou V, Stehfest E, Wicke B et al (2015) Projections of the availability and cost of residues from agriculture and forestry. GCB Bioenergy. doi:  10.1111/gcbb.12285 CrossRefGoogle Scholar
  14. 14.
    Fischer G, Prieler S, van Velthuizen H, et al. (2010) Biofuel production potentials in Europe: sustainable use of cultivated land and pastures, Part II: land use scenarios. Biomass Bioenergy 34:173–187. doi: 10.1016/j.biombioe.2009.07.009 CrossRefGoogle Scholar
  15. 15.
    Monforti F, Bódis K, Scarlat N, Dallemand J-F (2013) The possible contribution of agricultural crop residues to renewable energy targets in Europe: a spatially explicit study. Renew Sust Energ Rev 19:666–677. doi: 10.1016/j.rser.2012.11.060 CrossRefGoogle Scholar
  16. 16.
    Pudelko R, Borzecka-Walker M, Faber A (2013) The feedstock potential assessment for EU-27 + Switzerland in NUTS-3. Pulawy, PolandGoogle Scholar
  17. 17.
    Bentsen NS, Felby C, Thorsen BJ (2014) Agricultural residue production and potentials for energy and materials services. Prog Energy Combust Sci 40:59–73. doi: 10.1016/j.pecs.2013.09.003 CrossRefGoogle Scholar
  18. 18.
    Giuntoli J, Boulamanti AK, Corrado S, et al. (2013) Environmental impacts of future bioenergy pathways: the case of electricity from wheat straw bales and pellets. GCB Bioenergy 5:497–512. doi: 10.1111/gcbb.12012 CrossRefGoogle Scholar
  19. 19.
    Bacovsky D, Ludwiczek N, Ognissanto M, Manfred W (2013) Status of advanced biofuels demonstration facilities in 2012. A report to IEA bioenergy task 39, Paris, FranceGoogle Scholar
  20. 20.
    Kühner S (2013) Feedstock costs. Deliverable D1.1 of biomass based energy intermediates boosting biofuel production (BioBoost). Ganderkesee, GermanyGoogle Scholar
  21. 21.
    EUROSTAT (2015) Purchase prices of the means of agricultural production (absolute prices) - annual price (from 2000 onwards) [apri_ap_ina]. Accessed 2 Nov 2015
  22. 22.
    Chum H, Faaij A, Moreira J, et al. (2011) Chapter 2: bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y, et al. (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, pp. 203–332Google Scholar
  23. 23.
    Batidzirai B, Smeets EMW, Faaij APC (2012) Harmonising bioenergy resource potentials - methodological lessons from review of state of the art bioenergy potential assessments. Renew Sust Energ Rev 16:6598–6630. doi: 10.1016/j.rser.2012.09.002 CrossRefGoogle Scholar
  24. 24.
    De Wit M, Faaij A (2010) European biomass resource potential and costs. Biomass Bioenergy 34:188–202. doi: 10.1016/j.biombioe.2009.07.011 CrossRefGoogle Scholar
  25. 25.
    Krasuska E, Cadórniga C, Tenorio JL, et al. (2010) Potential land availability for energy crops production in Europe. Biofuels Bioprod Biorefin 4:658–673. doi: 10.1002/bbb.259 CrossRefGoogle Scholar
  26. 26.
    Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. FAO Agricultural Development Economics Division, RomeGoogle Scholar
  27. 27.
    European Commission (2014) Prospects for EU agriculture markets and income 2014–2024. European Commission, DG Agriculture and Rural DevelopmentGoogle Scholar
  28. 28.
    Overmars K, Stehfest E, Ros J, Prins A (2011) Indirect land use change emissions related to EU biofuel consumption: an analysis based on historical data. Environ Sci Pol 14:248–257. doi: 10.1016/j.envsci.2010.12.012 CrossRefGoogle Scholar
  29. 29.
    Woods J, Lynd LR, Laser M, et al. (2015) Chapter 9: land and bioenergy. In: Souza GM, Victoria R, Joly C, Verdade L (eds) Bioenergy & sustainability: bridging the gaps, vol 72. SCOPE, Paris, pp. 258–300Google Scholar
  30. 30.
    FAO (2012) Biofuel co-products as livestock feed - opportunities and challenges. Rome, ItalyGoogle Scholar
  31. 31.
    EEA (2013) EU bioenergy potential from a resource-efficiency perspective. Copenhagen, DenmarkGoogle Scholar
  32. 32.
    Elbersen B, Fritsche U, Petersen J-E, et al. (2013) Assessing the effect of stricter sustainability criteria on EU biomass crop potential. Biofuels Bioprod Biorefin 7:173–192. doi: 10.1002/bbb.1396 CrossRefGoogle Scholar
  33. 33.
    Allen B, Kretschmer B, Baldock D et al (2014) Space for energy crops – assessing the potential contribution to Europe’s energy future. IEEP, LondonGoogle Scholar
  34. 34.
    Wicke B, Verweij P, van Meijl H, et al. (2012) Indirect land use change: review of existing models and strategies for mitigation. Biofuels 3:87–100. doi: 10.4155/bfs.11.154 CrossRefGoogle Scholar
  35. 35.
    European Commission (2009) Directive 2009/28/EC of the European Parliament and of the Council on the promotion of the use of energy from renewable sources and amending and subsequently repealing repealing Directives 2001/77/EC and 2003/30/EC. Off J Eur Union 160:16–62Google Scholar
  36. 36.
    Stichnothe H (2017) Sustainability evaluation. In: Wagemann K, Tippkötter N (eds) Advances in biochemical engineering/biotechnology. Springer, Berlin/Heidelberg, pp. 1–21Google Scholar
  37. 37.
    FAO (2015) FAOSTAT. Accessed 23 Sep 2015
  38. 38.
    Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6:317–327. doi: 10.1046/j.1365-2486.2000.00308.x CrossRefGoogle Scholar
  39. 39.
    de Wit M, Lesschen JP, Londo M, Faaij APC (2014) Greenhouse gas mitigation effects of integrating biomass production into European agriculture. Biofuels Bioprod Biorefin 8:374–390. doi: 10.1002/bbb.1470 CrossRefGoogle Scholar
  40. 40.
    Potapov PV, Turubanova SA, Tyukavina A, et al. (2014) Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive. Remote Sens Environ 159:28–43. doi: 10.1016/j.rse. 2014.11.027 CrossRefGoogle Scholar
  41. 41.
    Schierhorn F, Müller D, Beringer T, et al. (2013) Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine, and Belarus. Glob Biogeochem Cycles 27:1175–1185. doi: 10.1002/2013GB004654 CrossRefGoogle Scholar
  42. 42.
    Pelkmans L, Elbersen B, Fritsche U et al (2014) Guidelines and indicators for the evaluation of sustainable resource efficient biomass value chains. Deliverable 2.6 of the Biomass Policies projectGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ingeborg N. Kluts
    • 1
  • Marnix L. J. Brinkman
    • 1
    Email author
  • Sierk A. de Jong
    • 1
  • H. Martin Junginger
    • 1
  1. 1.Copernicus Institute of Sustainable DevelopmentUtrechtThe Netherlands

Personalised recommendations