Vegetable Oil-Biorefinery

  • Frank PudelEmail author
  • Sebastian Wiesen
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 166)


Conventional vegetable oil mills are complex plants, processing oil, fruits, or seeds to vegetable fats and oils of high quality and predefined properties. Nearly all by-products are used. However, most of the high valuable plant substances occurring in oil fruits or seeds besides the oil are used only in low price applications (proteins as animal feeding material) or not at all (e.g., phenolics). This chapter describes the state-of-the-art of extraction and use of oilseed/oil fruit proteins and phyto-nutrients in order to move from a conventional vegetable oil processing plant to a proper vegetable oil-biorefinery producing a wide range of different high value bio-based products.


Glycerol Phyto-nutrients Plant protein Processing Refining Vegetable oil 


  1. 1.
  2. 2.
    Herseczki J, Kazmi A, Luque R, Luna D (2012) Secondary processing of plant oils. In: Kazmi A (ed) Advanced oil crop biorefineries, RSC Green Chemistry No. 14, Cambridge, pp 166–202Google Scholar
  3. 3.
    Ugolini L, De Nicola G, Palmieri S (2008) Use of reverse micelles for the simultaneous extraction of oil, proteins, and glucosinolates from cruciferous oilseeds. J Agric Food Chem 56:1595–1601CrossRefPubMedGoogle Scholar
  4. 4.
    Jensen SK, Olsen HS, Sørensen H (1990) Aqueous enzymatic processing of rapeseed for production of high quality products. In: Shahidi F (ed) Canola and rapeseed-production, chemistry, nutrition and processing technology. Van Nostran Reinhold, New York, pp. 331–343Google Scholar
  5. 5.
    Bagger C, Bellostas N, Jensen SK, Sørensen H, Sørensen JC, Sørensen S (2007) Processing - bioprocessing of oilseed rape in bioenergy production and value-added utilization of remaining seed components. In: Tingdon FU, Chunyun G (eds) Proceedings of the 12th International Rapeseed Congress, vol. 5. Science Press USA Inc., Wuhan, ChinaGoogle Scholar
  6. 6.
    Anon. (1998) Aqueous enzymatic extraction of oil from rapeseeds. Manufacture of food products and beverages. Environmental Management Centre, International Cleaner Production Information Clearinghouse, Denmark, 1991–1994Google Scholar
  7. 7.
    Bagger CL, Sørensen H, Sørensen JC, Sørensen S (2003) Biorefining, the soft processing alternative. In: Proceedings of the 11th GCIRC International Rapeseed Congress, Copenhagen, Denmark, p 650Google Scholar
  8. 8.
    Bellostas N, Sørensen JC, Sørensen H (2007) Biofumigation: from the “classical” approach to the use of biorefined glucosinolates as natural plant protection agents. GCIRC Bulletin n°2Google Scholar
  9. 9.
  10. 10.
    Da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 27(1):30–39CrossRefPubMedGoogle Scholar
  11. 11.
    Nanda M, Yuan Z, Qin W, Poirier M, Chunbao X (2014) Purification of crude glycerol using acidification: effects of acid types and product characterization. Austin J Chem Eng 1:1–7Google Scholar
  12. 12.
    Mothes G, Schnorpfeil C, Ackermann J-U (2007) Production of PHB from crude glycerol. Eng Life Sci 7:475–479CrossRefGoogle Scholar
  13. 13.
    Chatzifragkou A, Papanikolaou S (2012) Effect of impurities in biodiesel-derived waste glycerol on the performance and feasibility of biotechnological processes. Appl Microbiol Biotechnol 95(1):13–27CrossRefPubMedGoogle Scholar
  14. 14.
    Kerr B, Shurson G (2011) Biodiesel- quality, emissions and by-products. InTechGoogle Scholar
  15. 15.
    Garlapati VK, Shankar U, Budhiraja A (2016) Bioconversion technologies of crude glycerol to value added industrial products. Biotechnol Rep 9:9–14CrossRefGoogle Scholar
  16. 16.
    Ayoub M, Abdullah AZ (2012) Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renew Sust Energ Rev 16(5):2671–2686CrossRefGoogle Scholar
  17. 17.
    Johnson DT, Taconi KA (2007) The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog 26(4):338–348CrossRefGoogle Scholar
  18. 18.
    Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18(3):213–219CrossRefPubMedGoogle Scholar
  19. 19.
    Clomburg JM, Gonzalez R (2013) Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol 31(1):20–28CrossRefPubMedGoogle Scholar
  20. 20.
    Koutinas AA, Wang R-H, Webb C (2007) The biochemurgist –bioconversion of agricultural raw materials for chemical production. Biofuels Bioprod Biorefin 1(1):24–38CrossRefGoogle Scholar
  21. 21.
    Kachrimanidou V, Kopsahelis N, Chatzifragkou A, Papanikolaou S, Yanniotis S, Kookos I, Koutinas AA (2013) Utilisation of by-products from sunflower-based biodiesel production processes for the production of fermentation feedstock. Waste Biomass Valorization 4(3):529–537CrossRefGoogle Scholar
  22. 22.
    Mattam AJ, Clomburg JM, Gonzalez R, Yazdani SS (2013) Fermentation of glycerol and production of valuable chemical and biofuel molecules. Biotechnol Lett 35(6):831–842CrossRefPubMedGoogle Scholar
  23. 23.
    Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol--a byproduct of biodiesel production. Biotechnol Biofuels 5:13CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Jensen TØ, Kvist T, Mikkelsen MJ, Christensen PV, Westermann P (2012) Fermentation of crude glycerol from biodiesel production by Clostridium pasteurianum. J Ind Microbiol Biotechnol 39(5):709–717CrossRefPubMedGoogle Scholar
  25. 25.
    Wilkens E, Ringel AK, Hortig D, Willke T, Vorlop K-D (2012) High-level production of 1,3-propanediol from crude glycerol by Clostridium butyricum AKR102a. Appl Microbiol Biotechnol 93(3):1057–1063CrossRefGoogle Scholar
  26. 26.
    Wiesen S, Tippkötter N, Muffler K, Suck K, Sohling U, Ruf N, Ulber R (2014) Adsorptive Vorbehandlung von Rohglycerin für die 1,3-Propandiol Fermentation mit Clostridium diolis. Chemie Ing Tech 86(1–2):129–135CrossRefGoogle Scholar
  27. 27.
    Yazdani SS, Gonzalez R (2008) Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab Eng 10(6):340–351CrossRefGoogle Scholar
  28. 28.
    Hong A-A, Cheng K-K, Peng F, Zhou S, Sun Y, Liu C-M, Liu D-H (2009) Strain isolation and optimization of process parameters for bioconversion of glycerol to lactic acid. J Chem Technol Biotechnol 84(10):1576–1581CrossRefGoogle Scholar
  29. 29.
    Zhang X, Shanmugam KT, Ingram LO (2010) Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol 76(8):2397–2401CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Metsoviti M, Zeng A-P, Koutinas AA, Papanikolaou S (2013) Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. J Biotechnol 163(4):408–418CrossRefPubMedGoogle Scholar
  31. 31.
    Maru BT, Constanti M, Stchigel AM, Medina F, Sueiras JE (2013) Biohydrogen production by dark fermentation of glycerol using Enterobacter and Citrobacter Sp. Biotechnol Prog 29(1):31–38CrossRefPubMedGoogle Scholar
  32. 32.
    Zheng X, Jin K, Zhang L, Wang G, Liu Y (2015) Effects of oxygen transfer coefficient on dihydroxyacetone production from crude glycerol. Braz J Microbiol 7:129–135Google Scholar
  33. 33.
    Oh B-R, Seo J-W, Heo S-Y, Hong W-K, Luo LH, Kim S, Kwon O, Sohn J-H, Joe M, Park D-H, Kim CH (2012) Enhancement of ethanol production from glycerol in a Klebsiella pneumoniae mutant strain by the inactivation of lactate dehydrogenase. Process Biochem 47(1):156–159CrossRefGoogle Scholar
  34. 34.
    Zhao Y-N, Chen G, Yao S-J (2006) Microbial production of 1,3-propanediol from glycerol by encapsulated Klebsiella pneumoniae. Biochem Eng J 32(2):93–99CrossRefGoogle Scholar
  35. 35.
    Kośmider A, Drozdzyńska A, Blaszka K, Leja K, Czaczyk K (2010) Propionic acid production by Propionibacterium freudenreichii ssp. shermanii using crude glycerol and whey lactose industrial wastes. Pol J Environ Stud 19(6):1249–1253Google Scholar
  36. 36.
    André A, Diamantopoulou P, Philippoussis A, Sarris D, Komaitis M, Papanikolaou S (2010) Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid. Ind Crop Prod 31(2):407–416CrossRefGoogle Scholar
  37. 37.
    Rywińska A, Juszczyk P, Wojtatowicz M, Rymowicz W (2011) Chemostat study of citric acid production from glycerol by Yarrowia lipolytica. J Biotechnol 152(1–2):54–57CrossRefPubMedGoogle Scholar
  38. 38.
    Liu X, Jensen PR, Workman M (2012) Bioconversion of crude glycerol feedstocks into ethanol by Pachysolen tannophilus. Bioresour Technol 104:579–586CrossRefPubMedGoogle Scholar
  39. 39.
    Abad S, Turon X (2015) Biotechnological production of docosahexaenoic acid using Aurantiochytrium limacinum: carbon sources comparison and growth characterization. Mar Drugs 13(12):7275–7284CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rivaldi JD, Sarrouh BF, da Silva SS (2009) Current research topics in applied microbiology and microbial biotechnology. In: Mendez-Vilas A (ed) Development of biotechnological processes using glycerol from biodiesel production. Proceedings of the II international conference on environmental, industrial and applied microbiology. World Scientific, Singapore, pp. 429–433Google Scholar
  41. 41.
    Petitdemange E, Dürr C, Abbad-Andaloussi S, Raval G (1995) Fermentation of raw glycerol to 1, 3-propanediol by new strains ofClostridium butyricum. J Ind Microbiol 15(6):498–502CrossRefGoogle Scholar
  42. 42.
    González-Pajuelo M, Andrade JC, Vasconcelos I (2004) Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J Ind Microbiol Biotechnol 31(9):442–446CrossRefPubMedGoogle Scholar
  43. 43.
    Samul D, Leja K, Grajek W (2014) Impurities of crude glycerol and their effect on metabolite production. Ann Microbiol 64(3):891–898CrossRefPubMedGoogle Scholar
  44. 44.
    Biebl H, Menzel K, Zeng AP, Deckwer WD (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52(3):289–297CrossRefPubMedGoogle Scholar
  45. 45.
    Saxena RK, Anand P, Saran S, Isar J (2009) Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnol Adv 27(6):895–913CrossRefPubMedGoogle Scholar
  46. 46.
    Kurian JV (2005) A new polymer platform for the future — Sorona® from corn derived 1,3-propanediol. J Polym Environ 13(2):159–167CrossRefGoogle Scholar
  47. 47.
    Zeng A, Biebl H (2002) Bulk chemicals from biotechnology: the case of 1, 3-propanediol production and the new trends. Adv Biochem Eng Biotechnol 74:239–259PubMedGoogle Scholar
  48. 48.
    Lee CS, Aroua MK, Daud WMAW, Cognet P, Pérès-Lucchese Y, Fabre P-L, Reynes O, Latapie L (2015) A review: conversion of bioglycerol into 1,3-propanediol via biological and chemical method. Renew Sust Energ Rev 42:963–972CrossRefGoogle Scholar
  49. 49.
    Kraus GA (2008) Synthetic methods for the preparation of 1,3-propanediol. Clean 36(8):648–651Google Scholar
  50. 50.
    Freund A (1881) Über die Bildung und Darstellung von Trimethylenalkohol aus Glycerin. Monatsh Chem 2(1):636–641CrossRefGoogle Scholar
  51. 51.
    Laffend LA, Nagarajan V, Nakamura CE (1997) Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism.US-Patent US 5686276 A:2151–2156Google Scholar
  52. 52.
    Kaur G, Srivastava AK, Chand S (2012) Advances in biotechnological production of 1,3-propanediol. Biochem Eng J 64:106–118CrossRefGoogle Scholar
  53. 53.
    Rosenthal A, Pyle DL, Niranjan K (1996) Aqueous and enzymatic processes for edible oil extraction. Enzym Microb Technol 19(6):402–420CrossRefGoogle Scholar
  54. 54.
    Cintra MO, Lopez-Munguia A, Vernon J (1986) Coconut oil extraction by a new enzymatic process. J Food Sci 51(3):695–697CrossRefGoogle Scholar
  55. 55.
    Sosulski K, Sosulsky FW, Coxworth E (1988) Carbohydrate hydrolysis of canola to enhance oil extraction with hexane. J Am Oil Chem Soc 65(3):357–361CrossRefGoogle Scholar
  56. 56.
    Frevert J, Frische R, Hart J, Wittkind J (1990) Enzymatic solventless recovery of oils from plant materials. Ger. Offen. DE 3843027Google Scholar
  57. 57.
    Ho CC, Chow MC, Ong SH (1992) Recovery of residual oil from centrifuge sludge palm oil mill: effect of enzyme digestion and surfactant treatment. J Am Oil Chem Soc 69(3):276–282CrossRefGoogle Scholar
  58. 58.
    Ohlson R (1992) Modern processing of rapeseed. J Am Oil Chem Soc 69(3):195–198CrossRefGoogle Scholar
  59. 59.
    Sosulski K, Sosulski FW (1993) Enzyme-aided vs. two-stage processing of canola: technology, product quality and cost evaluation. J Am Oil Chem Soc 70(9):825–829CrossRefGoogle Scholar
  60. 60.
    Latif S, Diosady L, Anwar F (2008) Enzyme-assisted aqueous extraction of oil and protein from canola (Brassica napus L.) seeds. Eur J Lipid Sci Technol 110(10):887–892CrossRefGoogle Scholar
  61. 61.
    Latif S, Anwar F (2009) Effect of aqueous enzymatic process on sunflower oil quality. J Am Oil Chem Soc 86(4):393–400CrossRefGoogle Scholar
  62. 62.
    Latif S, Anwar F (2011) Aqueous enzymatic sesame oil and protein extraction. Food Chem 125(2):679–684CrossRefGoogle Scholar
  63. 63.
    Latif S, Karaj S, Müller (2013) Quality evaluation of Jatropha seed kernel oil obtained by aqueous enzymatic, mechanical and solvent extraction: Euro Fed Lipid Congress, Book of abstracts, p 347Google Scholar
  64. 64.
    Heckelmann A, Kraus J-P (2010) Entwicklung eines Hochspannungsimpuls-unterstützten Verfahrens zur Verdrängungsextraktion von Ölen und funktionellen Proteinen aus Ölsaaten am Beispiel von Raps. Schlussbericht zum Forschungsvorhaben AiF 15241 BGGoogle Scholar
  65. 65.
    Nazareth ZM, Nicolas AD, Lawrence AJ (2009) Functional properties of soy protein isolates prepared from gas-supported screw-pressed soybean meal. J Am Oil Chem Soc 86:315–321CrossRefGoogle Scholar
  66. 66.
    Müller M, Eggers R (2014) Gas-assisted oilseed pressing on an industrial scale. J Am Oil Chem Soc 91(9):1633–1641CrossRefGoogle Scholar
  67. 67.
  68. 68.
    Callaway JC (2004) Hempseed as a nutritional resource: an overview. Euphytica 140(1):65–72CrossRefGoogle Scholar
  69. 69.
    House JD, Neufeld J, Leson G (2010) Evaluating the quality of protein from hemp seed (Cannabis sativa L.) products through the use of the protein digestibility – corrected amino acid score method. J Agric Food Chem 58(22):11801–11807CrossRefPubMedGoogle Scholar
  70. 70.
    Gonzales-Perez S, Vereijken J (2007) Sunflower proteins: overview of their physicochemical, structural and functional properties. J Sci Food Agric 87(12):2173–2191CrossRefGoogle Scholar
  71. 71.
    Pickard C, Neidhart S, Griesbach C (2009) Optimisation of mild acid protein extraction from defatted sunflower (Helianthus annuus L.) meal. Food Hydrocoll 23(7):1966–1973CrossRefGoogle Scholar
  72. 72.
    Pickard C, Eisner P, Kammerer D (2015) Pilot plant preparation of light-coloured protein isolates from de-oiled sunflower (Helianthus annus L.) press cake by mild acidic protein extraction and polyphenol adsorption. Food Hydrocoll 44:208–219CrossRefGoogle Scholar
  73. 73.
    Salgado P, Drago S, Molina Ortiz A (2012) Production and characterization of sunflower (Helianthus annuus L.) protein-enriched products obtained at pilot plant scale. Food Sci Technol 45(1):65–72Google Scholar
  74. 74.
    Salgado P, Molina-Ortiz S, Petruccelli S (2010) Biodegradable sunflower protein films naturally activated with antioxidant compounds. Food Hydrocoll 24(5):525–533CrossRefGoogle Scholar
  75. 75.
    Hall C, Tulbek MC, Xu Y (2006) Flaxseed. Adv Food Nutr Res 51:1–97CrossRefPubMedGoogle Scholar
  76. 76.
    Vassel B, Nesbitt LL (1945) The nitrogenous constituents of flaxseed. II. The isolation of a purified protein fraction. J Biol Chem 159:571–584Google Scholar
  77. 77.
    Wanasundara JPD, Shahidi F (2003) Flaxseed proteins: potential food applications and process-induced changes. In: Thompson LU, Cunnane SC (eds) Flaxseed in human nutrition, 2nd edn. AOCS Press, Champaign, pp. 387–403Google Scholar
  78. 78.
    Oomah BD (2003) Processing of flaxseed fiber, oil, protein, and lignan. In: Thompson LU, Cunnane SC (eds) Flaxseed in human nutrition, 2nd edn. AOCS Press, Champaign, pp. 363–386Google Scholar
  79. 79.
    Chung MWY, Lei B, Li-Chan ECY (2005) Isolation and structural characterization of the major protein fraction from NorMan flaxseed (Linum usitatissimum L.). Food Chem 90(1–2):271–279CrossRefGoogle Scholar
  80. 80.
    Udenigwe CC, Aluko RE (2010) Antioxidant and angiotensin converting enzyme-inhibitory properties of a flaxseed protein-derived high fischer ratio peptide mixture. J Agric Food Chem 58(8):4762–4768CrossRefPubMedGoogle Scholar
  81. 81.
    Gopalan C, Ramasastri BV, Subramanian SC (2007) Nutritive value of Indian food. National Inst. Nutrition (ICMR) Press, HyderabadGoogle Scholar
  82. 82.
    Tehrani MHH, Batal R, Kamalinejad M, Mahbubi A (2014) Extraction and purification of flaxseed proteins and studying their antibacterial activities. J Plant Sci 2(1):70–76Google Scholar
  83. 83.
    Rubilar M, Gutierrez C, Verdugo C, Shene C, Sineiro J (2010) Flaxseed as a source of functional ingredients. J Soil Sci Plant Nutr 10(3):373–377CrossRefGoogle Scholar
  84. 84.
    Makkar HPS, Aderibigbe AO, Becker K (1998) Comparative evaluation of nontoxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. Food Chem 62(2):207–215CrossRefGoogle Scholar
  85. 85.
    Devappa RK, Makkar HPS, Becker K (2010) Nutritional, biochemical, and pharmaceutical potential of proteins and peptides from Jatropha: review. J Agric Food Chem 58(11):6543–6555CrossRefPubMedGoogle Scholar
  86. 86.
    Lestari D, Mulder W, Sanders J (2010) Improving Jatropha curcas seed protein recovery by using counter current multistage extraction. Biochem Eng J 50(1–2):16–23CrossRefGoogle Scholar
  87. 87.
    Saetae D, Kleekayai T, Jayasena V, Suntornsuk W (2011) Functional properties of protein isolate obtained from Physic nut (Jatropha curcas L.) seed cake. Food Sci Biotechnol 20(1):29–37CrossRefGoogle Scholar
  88. 88.
    Hamarneh AI, Heeres HJ, Broekhuis AA, Picchioni F (2010) Extraction of Jatropha curcas proteins and application in polyketone-based wood adhesives. Int J Adhes Adhes 30(7):615–625CrossRefGoogle Scholar
  89. 89.
    Makkar HPS, Francis G, Becker K (2008) Protein concentrate from Jatropha curcas screw-pressed seed cake and toxic and antinutritional factors in protein concentrate. J Sci Food Agric 88(9):1542–1548CrossRefGoogle Scholar
  90. 90.
    Devappa RK, Swamylingappa B (2008) Biochemical and nutritional evaluation of Jatropha protein isolate prepared by steam injection heating for reduction of toxic and antinutritional factors. J Sci Food Agric 88(5):911–919CrossRefGoogle Scholar
  91. 91.
    Lestari D, Mulder WJ, Sanders JPM (2011) Jatropha seed protein functional properties for technical applications. Biochem Eng J 53(3):297–304CrossRefGoogle Scholar
  92. 92.
    Schwenke KD (1994) Rapeseed proteins. New and developing sources of food proteins. In: Hudson BJF (ed) Chapman & Hall, LondonGoogle Scholar
  93. 93.
    Natsch A (2006) Untersuchung der Herstellbarkeit von Rapsproteinprodukten auf der Grundlage verschiedener Entölungsverfahren. Dissertation, TU Berlin, BerlinGoogle Scholar
  94. 94.
    Kroll J, Krause J-P, Rawel HM (2007) Native sekundäre Inhaltsstoffe in Rapssamen - Eigenschaften und Wechselwirkungen mit Proteinen. Deutsche Lebensmitel-Rundschau 103(4):149–153Google Scholar
  95. 95.
    Becker KW (1983) Current trends in meal desolventizing. JAOCS 60(2):216–219CrossRefGoogle Scholar
  96. 96.
    Krause J-P, Kroll J, Rawel HM (2007) Verarbeitung von Rapssaat–Eigenschaften und Gewinnung von Proteinen. UFOP-Schriften Heft 32. Rapsprotein in der HumanernährungGoogle Scholar
  97. 97.
    Leidt K-H, Mörl L, Pudel F, Weigel K, Zettl R (2009) Fluidized bed desolventizer for gentle rapeseed meal processing. Inform 20(11):731Google Scholar
  98. 98.
    Wanasundara JPD (2014) Proteins of Brassicaceae oilseeds and their potential as a plant protein source. Crit Rev Food Sci Nutr 51(7):635–677CrossRefGoogle Scholar
  99. 99.
    EFSA (2013) Scientific opinion on the safety of rapeseed protein isolate as a Novel Food ingredient. EFSA J 11(10):3420Google Scholar
  100. 100.
    Schweizer M, Segall K, Medina S, Willardsen R, Tergesen J (2007) Rapeseed/Canola protein isolates for the use in the food industry. In: 12th International Rape Seed Congress, 25–30 March 2007, Wuhan, ChinaGoogle Scholar
  101. 101.
    Slawski H (2011) Rapeseed protein products as fish meal replacement in fish nutrition. Dissertation, Christian-Albrechts-Universitat zu KielGoogle Scholar
  102. 102.
    Adem HN, Tressel R-P, Pudel F, Slawski H, Schulz C (2014) Rapeseed use in aquaculture. OCL 21(1):D105CrossRefGoogle Scholar
  103. 103.
    Palomino J, Metz R, Schulz J, Tressel R-P, Pudel F (2014) Rapeseed proteins for paperboard coating. Chem Ing Tech 86(8):1249–1259CrossRefGoogle Scholar
  104. 104.
    Pudel F, Tressel R-P, Düring K (2015) Production and properties of rapeseed albumin. Lipid Technol 27(5):1–3CrossRefGoogle Scholar
  105. 105.
    Schek A (2002) Sekundäre Pflanzenstoffe. Sporternährung 5:44–52Google Scholar
  106. 106.
    Walter B (2007) Einfluss des Reiskonsums auf die Gesundheit. ETH Zürich, Departement für Agrar- und Lebensmittelwissenschaften, p 14, 27Google Scholar
  107. 107.
    Patel M, Naik SN (2004) Gamma-oryzanol from rice bran oil - a review. J Sci Ind Res 63:569–578Google Scholar
  108. 108.
    Indira TN et al. (2004) Process for the production of oryzanol enriched fraction from rice bran oil soapstock. US-Patent US 2004/0192948 A1Google Scholar
  109. 109.
    Ramis-Ramos G et al. (2009) Composition, industrial processing and applications of rice bran γ-oryzanol. Food Chem 115(2):389–404CrossRefGoogle Scholar
  110. 110.
    Roche J, Alignan M, Bouniols A, Cerny M, Mouloungui Z, Vear F, Merah O (2010) Sterol content in sunflower seeds (Helianthus annuus L.) as affected by genotypes and environmental conditions. Food Chem 121(4):990–995CrossRefGoogle Scholar
  111. 111.
    Xiao H, Kun W, Ruijin Y (2015) Edible coatings from sunflower head pectin to reduce lipid uptake in fried potato chips. LWT Food Sci Technol 62(2):1220–1225CrossRefGoogle Scholar
  112. 112.
    Fei Y, Zhao J, Liu Y, Li X, Xu Q, Wang T, Khan IA, Yang S (2015) New monoterpene glycosides from sunflower seeds and their protective effects against H2O2-induced myocardial cell injury. Food Chem 187:385–390CrossRefPubMedGoogle Scholar
  113. 113.
    Popov A, Stefanov K (1968) Untersuchungen über die Zusammensetzung der Wachsbodensätze und des Sonnenblumenölwachses. Fette, Seifen, Anstrichmittel. Eur J Lipid Sci Technol 70(4):234–238Google Scholar
  114. 114.
    Hwang H-S, Kim S, Evans KO, Koga C, Lee Y (2015) Morphology and networks of sunflower wax crystals in soybean oil organogel. Food Struct 5:10–20CrossRefGoogle Scholar
  115. 115.
    Weisz GM, Kammerer DR, Carle R (2009) Identification and quantification of phenolic compounds from sunflower (Helianthus annuus L.) kernels and shells by HPLC-DAD/ESI-MSn. Food Chem 115(2):758–765CrossRefGoogle Scholar
  116. 116.
    Bäcker S (2013) Entwicklung eines industriell einsetzbaren Herstellungs- und Aufreinigungsverfahrens für Dicaffeoylchinasäuren als antivirale Wirkstoffe aus Sonnenblumen. Schlussbericht zum FuE-Vorhaben KF2023913SK1Google Scholar
  117. 117.
    Thomas R, Sah NK, Sharma PB (2008) Therapeutic biology of Jatropha curcas: a mini review. Curr Pharm Biotechnol 9(4):315–324CrossRefPubMedGoogle Scholar
  118. 118.
    Tomar NS, Ahanger MA, Agarwal RM (2014) Jatropha curcas: an overview. In: Ahmad P, Wani MR (eds) Physiological mechanisms and adaptation strategies in plants under changing environment. Springer Science & Business Media, New York, pp. 361–385CrossRefGoogle Scholar
  119. 119.
    Devappa RK, Makkar HPS, Becker K (2011) Jatropha Diterpenes: a review. J Am Oil Chem Soc 88(3):301–322CrossRefGoogle Scholar
  120. 120.
    Roach JS, Devappa RK, Makkar HPS, Becker K (2012) Isolation, stability and bioactivity of Jatropha curcas phorbol esters. Fitoterapia 83(3):586–592CrossRefPubMedGoogle Scholar
  121. 121.
    Idakiev HN, Pudel F, Romuli S, Müller J, Makkar H, Latif S, Karaj S, Probst L, Becker K (2014) Integrated use of Jatropha curcas. In: 12th Euro Fed Lipid Congress. Montpellier, FranceGoogle Scholar
  122. 122.
    Ratnadass A, Wink M (2012) The phorbol ester fraction from Jatropha curcas seed oil: potential and limits for crop protection against insect pests. Int J Mol Sci 13(12):16157–16171CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Koski A, Pekkarinen S, Hopia A, Wähälä K, Heinonen M (2003) Processing of rapeseed oil: effects on sinapinic acid derivative content and oxidative stability. Eur Food Res 217(12):110–114CrossRefGoogle Scholar
  124. 124.
    Wakamatsu D, Morimura S, Sawa T, Kida K, Nakai C, Maeda H (2005) Isolation, identification, and structure of a potent alkyl-peroxyl radical scavenger in crude canola oil, canolol. Biosci Biotechnol Biochem 69(8):1568–1574CrossRefPubMedGoogle Scholar
  125. 125.
    Matthäus B (2012) Effect of canolol on oxidation of edible oils. In: Thiyam-Holländer U, Eskin NAM, Matthäus B (eds) Canola and rapeseed: production, processing, food quality, and nutrition. CRC Press, Boca Raton, p 317CrossRefGoogle Scholar
  126. 126.
    Moltke Sørensen AD, Friel J, Winkler-Moser JK, Jacobsen C, Huidrom D, Reddy N, Thiyam-Holländer U (2013) Impact of endogenous canola phenolics on the oxidative stability of oil-in-water emulsions. Eur J Lipid Sci Technol 115(5):501–512CrossRefGoogle Scholar
  127. 127.
    Pudel F, Habicht V, Piofczyk T, Matthäus B, Quirin KW, Cawelius A (2014) Fluidized bed treatment of rapeseed meal and cake as possibility for the production of canolol. OCL 21(1):D103CrossRefGoogle Scholar
  128. 128.
    Matthäus B, Pudel F, Chen Y, Achary A, Thiyam-Holländer U (2014) Impact of canolol-enriched extract from heat-treated canola meal to enhance oil quality parameters in deep-frying: a comparison with rosemary extract and TBHQ-fortified oil systems. J Am Oil Chem Soc 91(12):2065–2076CrossRefGoogle Scholar
  129. 129.
    Thiel A, Muffler K, Tippkötter N, Suck K, Sohling U, Hruschka SM, Ulber R (2014) A novel integrated downstream processing approach to recover sinapic acid, phytic acid and proteins from rapeseed meal. J Chem Technol Biotechnol 90(11):1999–2006CrossRefGoogle Scholar
  130. 130.
    Goh SH, Choo YM, Ong ASH (1985) Minor components of palm oil. JAOCS 62:237–240CrossRefGoogle Scholar
  131. 131.
    Mazur W (2000) Phytoestrogens: occurrence in foods, and metabolism of lignans in man and pigs. Ph.D. Thesis, University of HelsinkiGoogle Scholar
  132. 132.
    Barnwal P, Singh KK, Mridula D, Kumar R, Rehal J (2010) Effect of moisture content and residence time on dehulling of flaxseed. J Food Sci Technol 47(6):662–667CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Sok D-E, Cui HS, Kim MR (2009) Isolation and bioactivities of furfuran type lignan compounds from edible plants. Recent Pat Food Nutr Agric 1(1):87–95CrossRefPubMedGoogle Scholar
  134. 134.
    Schröder K, Tressel R-P (2012) Schälverfahren für Leinsaat. PCT/EP 2012/055751Google Scholar
  135. 135.
    Lomascola A, Uzan-Boukhris E, Sigoillot J-C, Fine F (2012) Rapeseed and sunflower meal: a review on biotechnology status and challenges. Appl Microbiol Biotechnol 95(5):1105–1114CrossRefGoogle Scholar
  136. 136.
    Pleissner D, Venus J (2014) Agricultural residues as feedstocks for lactid acid fermentation. In: Obare et al. (eds) Green technologies for the environment, ACS Symposium Series. American Chemical Society, WashingtonGoogle Scholar
  137. 137.
    Mulder W, Harmsen P, Sanders J, Carre P, Kamm B, Schönicke P, Dautzenberg G (2012) Secondary processing of plant oils. In: Kazmi A (ed) Advanced oil crop biorefineries, RSC Green Chemistry No. 14, Cambridge, pp 166–202Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Pilot Pflanzenöltechnologie Magdeburg e.VMagdeburgGermany
  2. 2.DIREVO Industrial BiotechnologyKölnGermany

Personalised recommendations