Biorefineries pp 153-176 | Cite as

Organosolv Processes

  • Nicolas Brosse
  • Mohd Hazwan Hussin
  • Afidah Abdul Rahim
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 166)


Biofuels and chemicals can be produced from lignocellulosic feedstocks using biotechnological processes. The effective utilization of carbohydrates from biomass for the production of biofuels necessitates the development of pretreatment technologies to enhance their enzymatic digestibility. Among all the various pretreatment methods currently studied and developed, the organosolv processes, in which organic solvents or aqueous organic solvent mixtures are used as the pretreatment medium, appear to be specially promising in the context of the biorefinery because (1) they produce cellulosic pulp with a good enzymatic digestibility for monomeric glucose production and (2) they allow a clean fractionation of the major biomass components (cellulose, lignin, and hemicelluloses) into three process streams. In this chapter we give an updated overview of organosolv methods using conventional solvents and ionic liquids which have recently gained considerable interest as solvents for lignocellulosic biomass and pretreatment.


Ionic liquid Lignocellulose Pretreatment 



The EA 4370 LERMAB acknowledges the French National Research Agency through the Laboratory of Excellence ARBRE (ANR-12- LABXARBRE-01) for financial support.


  1. 1.
    Ragauskas A, Williams C, Davison B, Britovsek G, Cairney J, Eckert C, Frederick W, Hallett J, Leak D, Liotta C, Mielenz J, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489PubMedGoogle Scholar
  2. 2.
    Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27Google Scholar
  3. 3.
    Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110(6):3552–3599PubMedGoogle Scholar
  4. 4.
    Zhang YHP (2008) Reviving the carbohydrate economy via multi-product lignocelluloses biorefineries. J Ind Microbiol Biotechnol 35(5):367–375PubMedGoogle Scholar
  5. 5.
    Brosse N, Dufour A, Meng X, Sun Q, Ragauskas A (2012) Miscanthus: a fast-growing crop for biofuels and chemical production. Biofuels Bioprod Biorefin 6(5):580–598Google Scholar
  6. 6.
    Abdullah N, Sulaiman F, Gerhauser H (2011) Characterization of oil palm empty fruit bunches for fuel application. J Phys Sci 22(1):1–24Google Scholar
  7. 7.
    de Vrije T, de Hass GG, Tan GB, Keijsers ERP, Claaseen PAM (2002) Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. Int J Hydrog Energy 27:1381–1390Google Scholar
  8. 8.
    Liu P (2002) Improvement of bio-oil stability in wood pyrolysis. PhD thesis, Birmingham, Aston University, UKGoogle Scholar
  9. 9.
    Sun F, Chen H (2008) Organosolv pretreatment by crude glycerol from oleochemicals industry for enzymatic hydrolysis of wheat straw. Bioresour Technol 99(13):5474–5479PubMedGoogle Scholar
  10. 10.
    Zhang B, Wang L, Shahbazi A, Diallo O, Whitmore A (2011) Dilute sulfuric acid pretreatment of cattails for cellulose conversion. Bioresour Technol 102:9308–9312PubMedGoogle Scholar
  11. 11.
    Hussin MH, Rahim AA, Mohamad Ibrahim MN, Brosse N (2013) Physicochemical characterization of alkaline and ethanol organosolv lignins from oil palm (Elaeis guineensis) fronds as phenol substitutes for green material applications. Ind Crop Prod 49:23–32Google Scholar
  12. 12.
    Mussatto SI, Teixeira JA (2010) Lignocellulose as raw material in fermentation processes. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. FORMATEX, Badajoz, pp. 897–907Google Scholar
  13. 13.
    Sims R (2003) Biomass and resources bioenergy options for a cleaner environment in developed and developing countries. Elsevier Science, London, pp. 184–198Google Scholar
  14. 14.
    Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827PubMedGoogle Scholar
  15. 15.
    Sannigrahi P, Ragauskas AJ (2013) Fundamentals of biomass pretreatment by fractionation. In: Wyman CE Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. First Edition. John Wiley & Sons Ltd. pp. 201–222Google Scholar
  16. 16.
    Brosse N, Mohamad Ibrahim MN, Abdul A (2011) Biomass to bioethanol: Initiatives of the future for lignin. ISRN Mater Sci 2011:461482Google Scholar
  17. 17.
    Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344(6185):709Google Scholar
  18. 18.
    Wahlström RM, Suurnäkki A (2015) Enzymatic hydrolysis of lignocellulosic polysaccharides in the presence of ionic liquids. Green Chem 17:694–714Google Scholar
  19. 19.
    Brandt A, Gräsvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550–583Google Scholar
  20. 20.
    Duff SJB, Murray WD (1996) Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour Technol 55:1–33Google Scholar
  21. 21.
    Lora JH, Aziz S (1985) Organosolv pulping: a versatile approach to wood refining. Tappi J 68:94–97Google Scholar
  22. 22.
    Johansson A, Aaltonen O, Ylinen P (1987) Organosolv pulping method and pulp properties. Biomass 13:45–65Google Scholar
  23. 23.
    Aziz S, Sarkanen K (1989) Organosolv pulping—a review. Tappi J 72:169–175Google Scholar
  24. 24.
    Pye E, Lora J (1991) The Alcell process, a proven alternative to kraft pulping. Tappi J 74(3):113–118Google Scholar
  25. 25.
    Muurinen E (2000) Organosolv pulping—a review and distillation study related to peroxyacid pulping. Department of Process Engineering, University of Oulu, FIN-90014 University of OuluGoogle Scholar
  26. 26.
    Neilson MJ, Shafizadeh F, Aziz S, Sarkanen KV (1983) Evaluation of organosolv pulp as a suitable substrate for rapid enzymatic hydrolysis. Biotechnol Bioeng 25:609–612PubMedGoogle Scholar
  27. 27.
    Chum HL, Black SK, Johnson DK (1988) Organosolv pretreatment for enzymatic hydrolysis of poplars: isolation and quantitative structural studies of lignins. Clean Technol Environ Policy 1(3):187–198Google Scholar
  28. 28.
    Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11PubMedGoogle Scholar
  29. 29.
    Pan X, Gilkes N, Kadla J (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94(5):851–861PubMedGoogle Scholar
  30. 30.
    Pan X, Xie D, Yu R, Saddler J (2008) The bioconversion of mountain pine beetle-killed Lodgepole pine to fuel ethanol using the organosolv process. Biotechnol Bioeng 101(1):39–48PubMedGoogle Scholar
  31. 31.
    Brosse N, Sannigrahi P, Ragauska A (2009) Pretreatment of miscanthus x giganteus using the ethanol organosolv process for ethanol production. Ind Eng Chem Res 48(18):8328–8334Google Scholar
  32. 32.
    Hallac BB, Sannigrahi P, Pu Y, Ray M, Murphy RJ, Ragauskas A (2010) Effect of ethanol organosolv pretreatment on enzymatic hydrolysis of buddleja davidii stem biomass. Ind Eng Chem Res 49(4):1467–1472Google Scholar
  33. 33.
    Del Rio L, Chandra R, Saddler J (2010) The effect of varying organosolv pretreatment chemicals on the physicochemical properties and cellulolytic hydrolysis of mountain pine beetle-killed lodgepole pine. Appl Biochem Biotechnol 161(1):1–21PubMedGoogle Scholar
  34. 34.
    Munoz C, Mendonca R, Baeza J (2007) Bioethanol production from bio-organosolv pulps of Pinus radiate and Acacia dealbata. J Chem Technol Biotechnol 82:767–774Google Scholar
  35. 35.
    Sannigrahi P, Miller SJ, Ragauskas AJ (2010) Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydr Res 345(7):965–970PubMedGoogle Scholar
  36. 36.
    Pan X, Xie D, Yu R (2007) Biorefining of Lodgepole pine killed by mountain pine beetle using ethanol organo-solv process: fractionation and process optimization. Ind Eng Chem Res 46(8):2609–2617Google Scholar
  37. 37.
    Demirbas A (1998) Aqueous glycerol delignification of wood chips and ground wood. Bioresour Technol 63(2):179–185Google Scholar
  38. 38.
    Vazquez G, Antorrena G, Gonzalez J (2000) The influence of acetosolv pulping conditions on the enzymatic hydrolysis of Eucalyptus pulps. Wood Sci Technol 34:345–354Google Scholar
  39. 39.
    Dapia S, Santos V, Parajo J (2002) Study of formic acid as an agent for biomass fractionation. Biomass Bioenergy 22(3):213–221Google Scholar
  40. 40.
    Araque E, Parra C, Freer J (2008) Evaluation of organosolv pretreatment for the conversion of Pinus radiata D. Don to ethanol. Enzym Microb Technol 43:214–219Google Scholar
  41. 41.
    Huijgen W, Reith J, den Uil H (2010) Pretreatment and fractionation of wheat straw by an acetone-based organolv process. Ind Eng Chem Res 49(20):10132–10140Google Scholar
  42. 42.
    Zhang YP, Ding S, Mielenz JR, Cui J-B, Elander RT, Laser M, Himmel ME, McMillan JR, Lynd LR (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97(2):214–223PubMedGoogle Scholar
  43. 43.
    Patel DP, Varshney AK (1989) The effect of presoaking and prehydrolysis on the organosolv delignification of bagasse. Ind J Technol 27(6):285–288Google Scholar
  44. 44.
    Obama P, Ricochon G, Munuglia L, Brosse N (2012) Combination of enzymatic hydrolysis and ethanol organosolv pretreatments: effect on lignin structures, delignification yields and cellulose-to-glucose conversion. Bioresour Technol 112:156–163PubMedGoogle Scholar
  45. 45.
    Timilsena YP, Abeywickrama CJ, Rakshit SK, Brosse N (2013) Effect of different pretreatments on delignification pattern and enzymatic hydrolysability of miscanthus, oil palm biomass and typha grass. Bioresour Technol 135:82–88PubMedGoogle Scholar
  46. 46.
    Hansen NML, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromolecules 9(6):1495–1505Google Scholar
  47. 47.
    Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2(3):51–68Google Scholar
  48. 48.
    Timilsena YP (2012) Effect of different pretreatment methods in combination with the organosolv delignification process and enzymatic hydrolysability of three feedstocks in correlation with lignin structure. M. Eng thesis, Pathumthani: Asian Institute of Technology, ThailandGoogle Scholar
  49. 49.
    Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686PubMedGoogle Scholar
  50. 50.
    Wayman M, Lora JH (1978) Aspen autohydrolysis. The effect of 2-naphthol and other aromatic compounds. Tappi J 61(6):55–57Google Scholar
  51. 51.
    Walch E, Zemann A, Schinner F, Bonn G, Bobleter O (1992) Enzymatic saccharification of hemicellulose obtained from hydrothermally pretreated sugar can bagasse and beech bark. Bioresour Technol 39:173–177Google Scholar
  52. 52.
    Garrote G, Dominguez H, Parajo JC (1999) Mild autohydrolysis: an environmentally friendly technology for xylooligosaccharide production wood. J Chem Technol Biotechnol 74(11):1101–1109Google Scholar
  53. 53.
    Brosse N, El Hage R, Sannigrahi P, Ragauskas A (2010) Dilute sulphuric acid and ethanol organosolv pretreatment of miscanthus x giganteus. Cellul Chem Technol 44(1–3):71–78Google Scholar
  54. 54.
    Lora JH, Wayman M (1979) Delignification of hardwoods by autohydrolysis and extraction. Tappi J 61:47–50Google Scholar
  55. 55.
    Li J, Gellerstedt G (2008) Improved lignin properties and reactivity by modifications in the autohydrolysis process of aspen wood. Ind Crop Prod 27:175–181Google Scholar
  56. 56.
    El Hage R, Chrusciel L, Desharnais L, Brosse N (2010) Effect of autohydrolysis of miscanthus x giganteus on lignin structure and organosolv delignification. Bioresour Technol 101:9321–9329PubMedGoogle Scholar
  57. 57.
    Hussin MH, Rahim AA, Mohamad Ibrahim MN, Yemloul M, Perrin D, Brosse N (2014) Investigation on the structure and antioxidant properties of modified lignin obtained by different combinative processes of oil palm fronds (OPF) biomass. Ind Crop Prod 52:544–551Google Scholar
  58. 58.
    Hussin MH, Rahim AA, Mohamad Ibrahim MN, Perrin D, Yemloul M, Brosse N (2014) Impact of catalytic oil palm fronds (OPF) pulping on organosolv lignin properties. Polym Degrad Stab 109:33–39Google Scholar
  59. 59.
    Timilsena YP, Audu IG, Rakshit SK, Brosse N (2013) Impact of the lignin structure of three lignocellulosic feedstocks on their organosolv delignification. Effect of carbonium ion scavangers. Biomass Bioenergy 52:151–158Google Scholar
  60. 60.
    Li S, Lundquist K (2000) Cleavage of arylgylcerol beta-aryl ethers under neutral and acidic conditions. Nord Pulp Pap Res J 15:292–299Google Scholar
  61. 61.
    Ammalahti E, Brunow G, Bardet M, Robert D, Kipelainen IJ (1998) Identification of side-chain structures in a poplar lignin using three-dimensional HMQC-HOHAHA NMR spectroscopy. J Agric Food Chem 46:5113–5117Google Scholar
  62. 62.
    Garcia A, Toledano A, Serrano L, Egues I, Gonzales M, Marinn F, Labidi J (2009) Characterization of lignins obtained by selective precipitation. Sep Purif Technol 68:193–198Google Scholar
  63. 63.
    She D, Xu F, Geng Z, Sun R, Jones GL, Baird MS (2010) Physicochemical characterization of extracted lignin from sweet sorghum stem. Ind Crop Prod 32:21–28Google Scholar
  64. 64.
    McDonough T (1993) The chemistry of organosolv delignification. Tappi J 76(8):186–193Google Scholar
  65. 65.
    Meshgini M, Sarkanen KV (1989) Synthesis and kinetics of acid-catalyzed hydrolysis of some alpha-aryl ether lignin model compounds. Holzforschung 43(4):239–243Google Scholar
  66. 66.
    El Hage R, Brosse N, Sannigrahi P, Ragauskas A (2010) Effects of process severity on the chemical structure of Miscanthus ethanol organosolv lignin. Polym Degrad Stab 95:997–1003Google Scholar
  67. 67.
    Yang D, Qiu X, Zhou M, Lou H (2007) Properties of sodium lignosulfonate as dispersant of coal water slurry. Energy Convers Manag 48:2433–2438Google Scholar
  68. 68.
    Matsushita Y, Imai M, Iwatsuki A, Fukushima K (2008) The relationship between surface tension and the industrial performance of water-soluble polymers prepared from acid hydrolysis lignin, a saccharification by-product from woody materials. Bioresour Technol 99:3024–3028PubMedGoogle Scholar
  69. 69.
    Boeriu CG, Bravo D, Gosselink RJA, Van Dam JEG (2004) Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind Crop Prod 20:205–218Google Scholar
  70. 70.
    Sena-Martins G, Almeida-Vara E, Duarte JC (2008) Eco-friendly new products form enzymatically modified industrial lignins. Ind Crop Prod 27:189–195Google Scholar
  71. 71.
    Mohan D, Pittman CU, Steele PH (2006) Single, binary and multi-component adsorption of copper and cadmium from aqueous solutions on Kraft lignin-a biosorbent. J Colloid Interface Sci 297:489–504PubMedGoogle Scholar
  72. 72.
    El Mansouri NE, Salvado J (2006) Structural characterization of technical lignins for the production of adhesives: application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Ind Crop Prod 24:8–16Google Scholar
  73. 73.
    Tejado A, Pena C, Labidi J, Echeverria JM, Mondragon II (2007) Physicochemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis. Bioresour Technol 98:1655–1663PubMedGoogle Scholar
  74. 74.
    El Hage R, Brosse N, Navarrete P, Pizzi A (2011) Extraction, characterization and utilization of organosolv miscanthus lignin for the conception of environmentally friendly mixed tannin/lignin wood resins. J Adhes Sci Technol 25:1549–1560Google Scholar
  75. 75.
    El Hage R, Perrin D, Brosse N (2012) Effect of pre-treatement severity on the antioxidant properties of ethanol organosolv Miscanthus x giganteus lignin. Nat Res 3:29–34Google Scholar
  76. 76.
    Hussin MH, Shah AM, Rahim AA, Mohamad Ibrahim MN, Perrin D, Brosse N (2015) Antioxidant and anticorrosive properties of oil palm frond lignins extracted with different techniques. Ann For Sci 72(1):17–26Google Scholar
  77. 77.
    Hussin MH, Rahim AA, Mohamad Ibrahim MN, Brosse N (2015) Improved corrosion of mild steel by chemically modified lignin polymers from Elaeis guineensis agricultural waste. Mater Chem Phys 163:201–212Google Scholar
  78. 78.
    Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: Recent progress from knowledge to applications. Appl Catal A 373:1–56Google Scholar
  79. 79.
    Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975PubMedGoogle Scholar
  80. 80.
    Zhao H, Jones CIL, Baker GA, Xia S, Olubajo O, Person VN (2009) Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J Biotechnol 139:47–54PubMedGoogle Scholar
  81. 81.
    Chowdhury ZZ, Hohd Zain S, Abd Hamid S, Khalid K (2014) Catalytic role of ionic liquids for dissolution and degradation of biomacromolecules. Bioresources 9(1):1787–1823Google Scholar
  82. 82.
    Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholm R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crop Prod 32:175–201Google Scholar
  83. 83.
    Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327Google Scholar
  84. 84.
    Zakrzewska ME, Bogel-Łukasik E, Bogel-Łukasik R (2010) Solubility of carbohydrates in ionic liquids. Energy Fuel 24:737–745Google Scholar
  85. 85.
    Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728PubMedGoogle Scholar
  86. 86.
    Youngs TGA, Hardacre C, Holbrey JD (2007) Glucose solvation by the ionic liquid 1,3-dimethylimidazolium chloride: a simulation study. J Phys Chem B 111:13765–13774PubMedGoogle Scholar
  87. 87.
    Liu H, Sale KL, Holmes BM, Simmons BA, Singh S (2010) Understanding the interactions of cellulose with ionic liquid: a molecular dynamics study. J Phys Chem B 114:4293–4301PubMedGoogle Scholar
  88. 88.
    Wang X, Li H, Cao Y, Tang Q (2011) Cellulose extraction from wood chip in anionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Bioresour Technol 102:7959–7965PubMedGoogle Scholar
  89. 89.
    Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Bioresour Technol 100:2580–2587PubMedGoogle Scholar
  90. 90.
    Ninomiya K, Kamide K, Takahashi K, Shimizu N (2012) Enhanced enzymatic saccharification of kenaf powder after ultrasonic pretreatment in ionic liquids at room temperature. Bioresour Technol 103:259–265PubMedGoogle Scholar
  91. 91.
    Brandt A, Hallett JP, Leak DJ, Murphy RJ, Welton T (2010) The effect of the ionic liquid anion in the pretreatment of pine wood chips. Green Chem 12:672–679Google Scholar
  92. 92.
    Abe M, Fukaya Y, Ohno H (2010) Extraction of polysaccharides from bran with phosphonate or phosphinate-derived ionic liquids under short mixing time and low temperature. Green Chem 12:1274–1280Google Scholar
  93. 93.
    Li W, Sun N, Stoner B, Jiang X, Lu X, Rogers RD (2011) Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chem 13:2038–2047Google Scholar
  94. 94.
    Sun N, Rahman M, Qin Y, Maxim ML, Rodriguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid1-ethyl-3-methylimidazolium acetate. Green Chem 11:646Google Scholar
  95. 95.
    Viell J, Marquardt W (2011) Disintegration and dissolution kinetics of wood chips in ionic liquids. Holzforschung 65:519Google Scholar
  96. 96.
    Padmanabhan S, Kim M, Blanch HW, Prausnitz JM (2011) Solubility and rate of dissolution for Miscanthus in hydrophilic ionic liquids. Fluid Phase Equilib 309:89–96Google Scholar
  97. 97.
    Dibble DC, Li C, Sun L, George A, Cheng A, Cetinkol OP, Benke P, Holmes BM, Singh S, Simmons BA (2011) A facile method for the recovery of ionic liquid and lignin from biomass pretreatment. Green Chem 13(11):3255–3264Google Scholar
  98. 98.
    Shafiei M, Zilouei H, Zamani A, Taherzadeh MJ, Karimi K (2013) Enhancement of ethanol production from spruce wood chips by ionic liquid pretreatment. Appl Energy 102:163–169Google Scholar
  99. 99.
    Lynam JG, Toufiq Reza M, Vasquez VR, Coronella CJ (2012) Pretreatment of rice hulls by ionic liquid dissolution. Bioresour Technol 114:629–636PubMedGoogle Scholar
  100. 100.
    Miyafuji H, Miyata K, Saka S, Ueda F, Mori M (2009) Reaction behavior of wood in an ionic liquid, 1-ethyl-3-methylimidazolium chloride. J Wood Sci 55:215–219Google Scholar
  101. 101.
    da Costa Lopes AM, Joao KG, Morais ARC, Bogel-Lukasik E, Bogel-Lukasik R (2013) Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustainable Chem Process 1:3Google Scholar
  102. 102.
    Doherty TV, Mora-Pale M, Foley SE, Linhardt RJ, Dordick JS (2010) Ionic liquid solvent properties as predictors of lignocellulose pretreatment efficacy. Green Chem 12:1967Google Scholar
  103. 103.
    Khare SK, Pandey A, Larroche C (2015) Current perspectives in enzymatic saccharification of lignocellulosic biomass. Biochem Eng J 102:38–44Google Scholar
  104. 104.
    Procentese A, Johnson E, Orr V, Garruto Campanile A, Wood JA, Marzocchella A, Rehmann L (2015) Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresour Technol 192:31–36PubMedGoogle Scholar
  105. 105.
    Xu F, Shi Y-C, Wang D (2012) Enhanced production of glucose and xylose with partial dissolution of corn stover in ionic liquid, 1-ethyl-3-methylimidazolium acetate. Bioresour Technol 114:720–724PubMedGoogle Scholar
  106. 106.
    Trinh LTP, Lee YJ, Lee J-W, Lee HJ (2015) Characterization of ionic liquid pretreatment and the bioconversion of pretreated mixed softwood biomass. Biomass Bioenergy 81:1–8Google Scholar
  107. 107.
    El-Sayed H, Mutelet F, Moise JC, Brosse N (2015) Pretreatment of miscanthus using 1,3-dimethyl-imidazolium methyl phosphonate (DMIMMPh) ionic liquid for glucose recovery and ethanol production. RSC Adv 5(75):61455–61464Google Scholar
  108. 108.
    Auxenfans T, Buchoux S, Larcher D, Husson G, Husson E, Sarazin C (2014) Enzymatic saccharification and structural properties of industrial wood sawdust: recycled ionic liquids pretreatments. Energy Convers Manag 88:1094–1103Google Scholar
  109. 109.
    Socha AM, Plummer SP, Stavila V, Simmons BA, Sing S (2013) Comparison of sugar content for ionic liquid pretreated Douglas-fir woodchips and forestry residues. Biotechnol Biofuels 6:61PubMedGoogle Scholar
  110. 110.
    Brandt A, Ray MJ, To TQ, Leak DJ, Murphy RJ, Welton T (2011) Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chem 13:2489Google Scholar
  111. 111.
    Audu IG, Brosse N, Desharnais L, Rakshit S (2013) Investigation of the effects of 1-butyl-3-methylimidazolium acetate pretreatment and enzymatic hydrolysis of typha capensis. Energy Fuels 27(1):189–196Google Scholar
  112. 112.
    Nguyen TD, Kim KR, Han SJ, Cho HY, Kim JW, Park SM, Park JC, Sim SJ (2010) Pretreatment of rice straw with ammonia and ionic liquid for lignocelluloses conversion to fermentable sugars. Bioresour Technol 101(19):7432–7438PubMedGoogle Scholar
  113. 113.
    Kamiya N, Matsushita Y, Hanaki M, Nakashima K, Narita M, Goto M, Takahashi H (2008) Enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media. Biotechnol Lett 30:1037–1040PubMedGoogle Scholar
  114. 114.
    Engel P, Mladenov R, Wulfhorst H, Jager G, Spiess AC (2010) Point by point analysis: how ionic liquid affects the enzymatic hydrolysis of native and modified cellulose. Green Chem 12:1959–1966Google Scholar
  115. 115.
    Engel P, Krull S, Seiferheld B, Spiess AC (2012) Rational approach to optimize cellulase mixtures for hydrolysis of regenerated cellulose containing residual ionic liquid. Bioresour Technol 115:27–34PubMedGoogle Scholar
  116. 116.
    Wei L, Li K, Ma Y, Hou X (2012) Dissolving lignocellulosic biomass in a 1-butyl-3-methylimidazolium chloride–water mixture. Ind Crop Prod 37:227–234Google Scholar
  117. 117.
    Shill K, Padmanabhan S, Xin Q, Prausnitz JM, Clark DS, Blanch HW (2011) Ionic liquid pretreatment of cellulosic biomass: enzymatic hydrolysis and ionic liquid recycle. Biotechnol Bioeng 108:511–520PubMedGoogle Scholar
  118. 118.
    Zhu S, Yu P, Wang Q, Cheng B, Chen J, Wu Y (2013) Breaking the barriers of lignocellulosic ethanol production using ionic liquid technology. Bioresources 8(2):1510–1512Google Scholar
  119. 119.
    Klein-Marcuschamer D, Simmons BA, Blanch HW (2011) Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels Bioprod Biorefin 5(5):562–569Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nicolas Brosse
    • 1
  • Mohd Hazwan Hussin
    • 2
  • Afidah Abdul Rahim
    • 2
  1. 1.LERMAB, Faculté des Sciences et TechnologiesUniversité de LorraineVandoeuvre-lès-NancyFrance
  2. 2.Lignocellulosic Research Group, School of Chemical SciencesUniversiti Sains MalaysiaPenangMalaysia

Personalised recommendations