Continuous Manufacturing of Recombinant Therapeutic Proteins: Upstream and Downstream Technologies

  • Rohan Patil
  • Jason WaltherEmail author
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 165)


Continuous biomanufacturing of recombinant therapeutic proteins offers several potential advantages over conventional batch processing, including reduced cost of goods, more flexible and responsive manufacturing facilities, and improved and consistent product quality. Although continuous approaches to various upstream and downstream unit operations have been considered and studied for decades, in recent years interest and application have accelerated. Researchers have achieved increasingly higher levels of process intensification, and have also begun to integrate different continuous unit operations into larger, holistically continuous processes. This review first discusses approaches for continuous cell culture, with a focus on perfusion-enabling cell separation technologies including gravitational, centrifugal, and acoustic settling, as well as filtration-based techniques. We follow with a review of various continuous downstream unit operations, covering categories such as clarification, chromatography, formulation, and viral inactivation and filtration. The review ends by summarizing case studies of integrated and continuous processing as reported in the literature.


Biomanufacturing Continuous Continuous chromatography Downstream Integrated Perfusion Upstream 


  1. 1.
    Chu L, Robinson DK (2001) Industrial choices for protein production by large-scale cell culture. Curr Opin Biotechnol 12(2):180–187CrossRefPubMedGoogle Scholar
  2. 2.
    Croughan MS, Konstantinov KB, Cooney C (2015) The future of industrial bioprocessing: batch or continuous? Biotechnol Bioeng 112(4):648–651CrossRefPubMedGoogle Scholar
  3. 3.
    Kelley B (2009) Industrialization of mAb production technology: the bioprocessing industry at a crossroads. In: MAbs. vol 5. Taylor & Francis, pp 443–452Google Scholar
  4. 4.
    Castilho LR (2014) Continuous animal cell perfusion processes: the first step toward integrated continuous biomanufacturing. In: Subramanian G (ed) Continuous processing in pharmaceutical manufacturing. Wiley-VCH, WeinheimGoogle Scholar
  5. 5.
    Chotteau V (2015) Perfusion processes. In: Al-Rubeai M (ed) Animal cell culture. Springer, Cham, pp. 407–443Google Scholar
  6. 6.
    Jungbauer A (2013) Continuous downstream processing of biopharmaceuticals. Trends Biotechnol 31(8):479–492CrossRefPubMedGoogle Scholar
  7. 7.
    Konstantinov KB, Cooney CL (2015) White paper on continuous bioprocessing. May 20–21, 2014 Continuous Manufacturing Symposium. J Pharm Sci 104(3):813–820CrossRefPubMedGoogle Scholar
  8. 8.
    Rathore AS, Agarwal H, Sharma AK, Pathak M, Muthukumar S (2015) Continuous processing for production of biopharmaceuticals. Prep Biochem Biotechnol 45(8):836–849CrossRefPubMedGoogle Scholar
  9. 9.
    Zydney AL (2016) Continuous downstream processing for high value biological products: a review. Biotechnol Bioeng 113(3):465–475CrossRefPubMedGoogle Scholar
  10. 10.
    Hammerschmidt N, Tscheliessnig A, Sommer R, Helk B, Jungbauer A (2014) Economics of recombinant antibody production processes at various scales: industry-standard compared to continuous precipitation. Biotechnol J 9(6):766–775CrossRefPubMedGoogle Scholar
  11. 11.
    Klutz S, Holtmann L, Lobedann M, Schembecker G (2016) Cost evaluation of antibody production processes in different operation modes. Chem Eng Sci 141:63–74CrossRefGoogle Scholar
  12. 12.
    Pollock J, Bolton G, Coffman J, Ho SV, Bracewell DG, Farid SS (2013) Optimising the design and operation of semi-continuous affinity chromatography for clinical and commercial manufacture. J Chromatogr A 1284:17–27CrossRefPubMedGoogle Scholar
  13. 13.
    Pollock J, Ho SV, Farid SS (2013) Fed-batch and perfusion culture processes: economic, environmental, and operational feasibility under uncertainty. Biotechnol Bioeng 110(1):206–219CrossRefPubMedGoogle Scholar
  14. 14.
    Walther J, Godawat R, Hwang C, Abe Y, Sinclair A, Konstantinov K (2015) The business impact of an integrated continuous biomanufacturing platform for recombinant protein production. J Biotechnol 213:3–12CrossRefPubMedGoogle Scholar
  15. 15.
    Godawat R, Konstantinov K, Rohani M, Warikoo V (2015) End-to-end integrated fully continuous production of recombinant monoclonal antibodies. J Biotechnol 213:13–19CrossRefPubMedGoogle Scholar
  16. 16.
    Klutz S, Magnus J, Lobedann M, Schwan P, Maiser B, Niklas J, Temming M, Schembecker G (2015) Developing the biofacility of the future based on continuous processing and single-use technology. J Biotechnol 213:120–130CrossRefPubMedGoogle Scholar
  17. 17.
    Warikoo V, Godawat R, Brower K, Jain S, Cummings D, Simons E, Johnson T, Walther J, Yu M, Wright B, McLarty J, Karey KP, Hwang C, Zhou W, Riske F, Konstantinov K (2012) Integrated continuous production of recombinant therapeutic proteins. Biotechnol Bioeng 109(12):3018–3029CrossRefPubMedGoogle Scholar
  18. 18.
    Chang HN, Yoo I-K, Kim BS (1994) High density cell culture by membrane-based cell recycle. Biotechnol Adv 12(3):467–487CrossRefPubMedGoogle Scholar
  19. 19.
    Voisard D, Meuwly F, Ruffieux PA, Baer G, Kadouri A (2003) Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells. Biotechnol Bioeng 82(7):751–765CrossRefPubMedGoogle Scholar
  20. 20.
    Woodside SM, Bowen BD, Piret JM (1998) Mammalian cell retention devices for stirred perfusion bioreactors. Cytotechnology 28(1-3):163–175PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Boedeker BG (2013) Recombinant Factor VIII (Kogenate) for the treatment of hemophilia A: the first and only world-wide licensed recombinant protein produced in high-throughput perfusion culture. In: Knäblein J (ed) Modern biopharmaceuticals: recent success stories. Wiley, pp 429–443Google Scholar
  22. 22.
    Cohen EP, Eagle H (1961) A simplified chemostat for the growth of mammalian cells: characteristics of cell growth in continuous culture. J Exp Med 113(2):467–474PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Sinclair R (1974) Response of mammalian cells to controlled growth rates in steady-state continuous culture. In Vitro 10:295–305CrossRefPubMedGoogle Scholar
  24. 24.
    Europa AF, Gambhir A, Fu PC, Hu WS (2000) Multiple steady states with distinct cellular metabolism in continuous culture of mammalian cells. Biotechnol Bioeng 67(1):25–34CrossRefPubMedGoogle Scholar
  25. 25.
    Matsuoka H, Takeda T (2005) Effect of glucose and glutamine concentration on metabolism of animal cells in chemostat culture. In: Gòdia F, Fussenegger M (eds) Animal cell technology meets genomics. Springer, Dordrecht, pp. 617–620CrossRefGoogle Scholar
  26. 26.
    Matsuoka H, Watanabe J-y, Takeda T (2006) Influence of both glucose and glutamine concentration on mAb production rate in chemostat culture of CHO cells. In: Iijima S, Nishijima K-I (eds) Animal cell technology: basic and applied aspects. Springer, Dordrecht, pp. 121–125CrossRefGoogle Scholar
  27. 27.
    Nyberg GB, Balcarcel RR, Follstad BD, Stephanopoulos G, Wang DI (1999) Metabolic effects on recombinant interferon-γ glycosylation in continuous culture of Chinese hamster ovary cells. Biotechnol Bioeng 62(3):336–347CrossRefPubMedGoogle Scholar
  28. 28.
    Desai SG (2015) Continuous and semi-continuous cell culture for production of blood clotting factors. J Biotechnol 213:20–27CrossRefPubMedGoogle Scholar
  29. 29.
    Jen AC, Wake MC, Mikos AG (1996) Review: Hydrogels for cell immobilization. Biotechnol Bioeng 50(4):357–364CrossRefPubMedGoogle Scholar
  30. 30.
    Kühtreiber WM, Lanza RP, Chick WL (eds) (2013) Cell encapsulation technology and therapeutics. Springer Science & Business Media, New YorkGoogle Scholar
  31. 31.
    Meuwly F, Ruffieux P-A, Kadouri A, Von Stockar U (2007) Packed-bed bioreactors for mammalian cell culture: bioprocess and biomedical applications. Biotechnol Adv 25(1):45–56CrossRefPubMedGoogle Scholar
  32. 32.
    Piret JM, Cooney CL (1990) Immobilized mammalian cell cultivation in hollow fiber bioreactors. Biotechnol Adv 8(4):763CrossRefPubMedGoogle Scholar
  33. 33.
    Tyo MA, Spier RE (1987) Dense cultures of animal cells at the industrial scale. Enzyme Microb Technol 9(9):514–520CrossRefGoogle Scholar
  34. 34.
    Kitano K, Shintani Y, Ichimori Y, Tsukamoto K, Sasai S, Kida M (1986) Production of human monoclonal antibodies by heterohybridomas. Appl Microbiol Biotechnol 24(4):282–286CrossRefGoogle Scholar
  35. 35.
    Shintani Y, Kohno Y-I, Sawada H, Kitano K (1991) Comparison of culture methods for human-human hybridomas secreting anti-HBsAg human monoclonal antibodies. Cytotechnology 6(3):197–208CrossRefPubMedGoogle Scholar
  36. 36.
    Takazawa Y, Tokashiki M (1989) High cell density perfusion culture of mouse-human hybridomas. Appl Microbiol Biotechnol 32(3):280–284CrossRefGoogle Scholar
  37. 37.
    Hülscher M, Scheibler U, Onken U (1992) Selective recycle of viable animal cells by coupling of airlift reactor and cell settler. Biotechnol Bioeng 39(4):442–446CrossRefPubMedGoogle Scholar
  38. 38.
    Feder J, Tolbert WR (1983) The large-scale cultivation of mammalian cells. Sci Am 248:36–43CrossRefPubMedGoogle Scholar
  39. 39.
    Ghanem A, Shuler M (2000) Characterization of a perfusion reactor utilizing mammalian cells on microcarrier beads. Biotechnol Prog 16(3):471–479CrossRefPubMedGoogle Scholar
  40. 40.
    Kim JH, Park JH, Kang WK, Yoon SK (1999) Perfusion culture using microcarrier for the production of Varicella-Zoster virus in human embryonic lung cells. Biotechnol Lett 21(2):129–133CrossRefGoogle Scholar
  41. 41.
    Cherry RS, Papoutsakis ET (1988) Physical mechanisms of cell damage in microcarrier cell culture bioreactors. Biotechnol Bioeng 32(8):1001–1014CrossRefPubMedGoogle Scholar
  42. 42.
    Croughan MS, Hamel JF, Wang DI (1987) Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotechnol Bioeng 29(1):130–141CrossRefPubMedGoogle Scholar
  43. 43.
    Thompson KJ, Wilson JS (1998) Particle settler for use in cell culture. US Patent US5817505 AGoogle Scholar
  44. 44.
    Acrivos A, Herbolzheimer E (1979) Enhanced sedimentation in settling tanks with inclined walls. J Fluid Mech 92(03):435–457CrossRefGoogle Scholar
  45. 45.
    Boycott A (1920) Sedimentation of blood corpuscles. Nature 104:532CrossRefGoogle Scholar
  46. 46.
    Searles J, Todd P, Kompala D (1994) Viable cell recycle with an inclined settler in the perfusion culture of suspended recombinant Chinese hamster ovary cells. Biotechnol Prog 10(2):198–206CrossRefPubMedGoogle Scholar
  47. 47.
    Kohara Y, Ueda H, Suzuki E (1995) Enhanced settling of mammalian cells in tanks with inclined plates/simulation by fluid mechanical model and experiment. J Chem Eng Japan 28(6):703–707CrossRefGoogle Scholar
  48. 48.
    Shen Y, Yanagimachi K (2011) CFD-aided cell settler design optimization and scale-up: effect of geometric design and operational variables on separation performance. Biotechnol Prog 27(5):1282–1296CrossRefPubMedGoogle Scholar
  49. 49.
    Wang Z, Belovich JM (2010) A simple apparatus for measuring cell settling velocity. Biotechnol Prog 26(5):1361–1366CrossRefPubMedGoogle Scholar
  50. 50.
    Choo CY, Tian Y, Kim WS, Blatter E, Conary J, Brady CP (2007) High-level production of a monoclonal antibody in murine myeloma cells by perfusion culture using a gravity settler. Biotechnol Prog 23(1):225–231CrossRefPubMedGoogle Scholar
  51. 51.
    Lipscomb ML, Mowry MC, Kompala DS (2004) Production of a secreted glycoprotein from an inducible promoter system in a perfusion bioreactor. Biotechnol Prog 20(5):1402–1407CrossRefPubMedGoogle Scholar
  52. 52.
    Vogel JH, Nguyen H, Giovannini R, Ignowski J, Garger S, Salgotra A, Tom J (2012) A new large-scale manufacturing platform for complex biopharmaceuticals. Biotechnol Bioeng 109(12):3049–3058CrossRefPubMedGoogle Scholar
  53. 53.
    Batt BC, Davis RH, Kompala DS (1990) Inclined sedimentation for selective retention of viable hybridomas in a continuous suspension bioreactor. Biotechnol Prog 6(6):458–464CrossRefPubMedGoogle Scholar
  54. 54.
    Hecht V, Duvar S, Ziehr H, Burg J, Jockwer A (2014) Efficiency improvement of an antibody production process by increasing the inoculum density. Biotechnol Prog 30(3):607–615CrossRefPubMedGoogle Scholar
  55. 55.
    Pohlscheidt M, Jacobs M, Wolf S, Thiele J, Jockwer A, Gabelsberger J, Jenzsch M, Tebbe H, Burg J (2013) Optimizing capacity utilization by large scale 3000 L perfusion in seed train bioreactors. Biotechnol Prog 29(1):222–229CrossRefPubMedGoogle Scholar
  56. 56.
    Hamamoto K, Ishimaru K, Tokashiki M (1989) Perfusion culture of hybridoma cells using a centrifuge to separate cells from culture mixture. J Ferment Bioeng 67(3):190–194CrossRefGoogle Scholar
  57. 57.
    Takamatsu H, Hamamoto K, Ishimura K, Yokoyama S, Tokashiki M (1996) Large-scale perfusion culture process for suspended mammalian cells that uses a centrifuge with multiple settling zones. Appl Microbiol Biotechnol 45(4):454–457CrossRefPubMedGoogle Scholar
  58. 58.
    Tokashiki M, Arai T, Hamamoto K, Ishimaru K (1990) High density culture of hybridoma cells using a perfusion culture vessel with an external centrifuge. Cytotechnology 3(3):239–244CrossRefPubMedGoogle Scholar
  59. 59.
    Björling T, Dudel U, Fenge C (1995) Evaluation of a cell separator in large scale perfusion culture. In: Animal cell technology: developments towards the 21st century. Springer, pp 671–675Google Scholar
  60. 60.
    Jäger V (1992) High density perfusion culture of animal cells using a novel continuous flow centrifuge. In: Animal cell technology: Basic & applied aspects. Springer, pp 209–216Google Scholar
  61. 61.
    Chatzisavido N, Björling T, Fenge C, Boork S, Lindner-Olsson E, Apelman S (1994) A continuous cell centrifuge for lab scale perfusion processes of mammalian cells. In: Animal cell technology: basic & applied aspects. Springer, pp 463–468Google Scholar
  62. 62.
    Johnson M, Lanthier S, Massie B, Lefebvre G, Kamen AA (1996) Use of the Centritech Lab Centrifuge for perfusion culture of hybridoma cells in protein-free medium. Biotechnol Prog 12(6):855–864CrossRefPubMedGoogle Scholar
  63. 63.
    Kim BJ, Chang HN, Oh DJ (2007) Application of a cell-once-through perfusion strategy for production of recombinant antibody from rCHO cells in a Centritech Lab II centrifuge system. Biotechnol Prog 23(5):1186–1197CrossRefPubMedGoogle Scholar
  64. 64.
    Kim S-C, An S, Kim H-K, Park B-S, Na K-H, Kim B-G (2015) Effect of transmembrane pressure on Factor VIII yield in ATF perfusion culture for the production of recombinant human Factor VIII co-expressed with von Willebrand factor. Cytotechnology 68:1689–1696PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Pattasseril J, Varadaraju H, Lock L, Rowley JA (2013) Downstream technology landscape for large-scale therapeutic cell processing. Bioprocess Int 11(3):38–47Google Scholar
  66. 66.
    Mehta S (2014) Automated single-use centrifugation solution for diverse biomanufacturing process. In: Subramanian G (ed) Continuous processing in pharmaceutical manufacturing. Wiley-VCH, Weinheim, pp. 385–400Google Scholar
  67. 67.
    Kilburn D, Clarke D, Coakley W, Bardsley D (1989) Enhanced sedimentation of mammalian cells following acoustic aggregation. Biotechnol Bioeng 34(4):559–562CrossRefPubMedGoogle Scholar
  68. 68.
    Shirgaonkar IZ, Lanthier S, Kamen A (2004) Acoustic cell filter: a proven cell retention technology for perfusion of animal cell cultures. Biotechnol Adv 22(6):433–444CrossRefPubMedGoogle Scholar
  69. 69.
    Doblhoff-Dier O, Gaida T, Katinger H, Burger W, Groschl M, Benes E (1994) A novel ultrasonic resonance field device for the retentiojn of animal cells. Biotechnol Prog 10(4):428–432CrossRefPubMedGoogle Scholar
  70. 70.
    Gaida T, Doblhoff-Dier O, Strutzenberger K, Katinger H, Burger W, Gröschl M, Handl B, Benes E (1996) Selective retention of viable cells in ultrasonic resonance field devices. Biotechnol Prog 12(1):73–76CrossRefPubMedGoogle Scholar
  71. 71.
    Bierau H, Perani A, Al-Rubeai M, Emery A (1998) A comparison of intensive cell culture bioreactors operating with hybridomas modified for inhibited apoptotic response. J Biotechnol 62(3):195–207CrossRefPubMedGoogle Scholar
  72. 72.
    Crowley J (2004) Using sound waves for cGMP manufacturing of a fusion protein with mammalian cells. Bioprocess Int 2(3):46–50Google Scholar
  73. 73.
    Gorenflo VM, Angepat S, Bowen BD, Piret JM (2003) Optimization of an acoustic cell filter with a novel air-backflush system. Biotechnol Prog 19(1):30–36CrossRefPubMedGoogle Scholar
  74. 74.
    Dalm MC, Cuijten SM, Van Grunsven WM, Tramper J, Martens DE (2004) Effect of feed and bleed rate on hybridoma cells in an acoustic perfusion bioreactor. Part I. Cell density, viability, and cell-cycle distribution. Biotechnol Bioeng 88(5):547–557CrossRefPubMedGoogle Scholar
  75. 75.
    Gorenflo VM, Ritter JB, Aeschliman DS, Drouin H, Bowen BD, Piret JM (2005) Characterization and optimization of acoustic filter performance by experimental design methodology. Biotechnol Bioeng 90(6):746–753CrossRefPubMedGoogle Scholar
  76. 76.
    Gorenflo VM, Smith L, Dedinsky B, Persson B, Piret JM (2002) Scale-up and optimization of an acoustic filter for 200 L/day perfusion of a CHO cell culture. Biotechnol Bioeng 80(4):438–444CrossRefPubMedGoogle Scholar
  77. 77.
    Pui PW, Trampler F, Sonderhoff SA, Groeschl M, Kilburn DG, Piret JM (1995) Batch and semicontinuous aggregation and sedimentation of hybridoma cells by acoustic resonance fields. Biotechnol Prog 11(2):146–152CrossRefPubMedGoogle Scholar
  78. 78.
    Dalm MC, Jansen M, Keijzer TM, van Grunsven WM, Oudshoorn A, Tramper J, Martens DE (2005) Stable hybridoma cultivation in a pilot-scale acoustic perfusion system: long-term process performance and effect of recirculation rate. Biotechnol Bioeng 91(7):894–900CrossRefPubMedGoogle Scholar
  79. 79.
    Ryll T, Dutina G, Reyes A, Gunson J, Krummen L, Etcheverry T (2000) Performance of small-scale CHO perfusion cultures using an acoustic cell filtration device for cell retention: characterization of separation efficiency and impact of perfusion on product quality. Biotechnol Bioeng 69(4):440–449CrossRefPubMedGoogle Scholar
  80. 80.
    Mercille S, Johnson M, Lanthier S, Kamen AA, Massie B (2000) Understanding factors that limit the productivity of suspension-based perfusion cultures operated at high medium renewal rates. Biotechnol Bioeng 67(4):435–450CrossRefPubMedGoogle Scholar
  81. 81.
    Trampler F, Sonderhoff SA, Pui PW, Kilburn DG, Piret JM (1994) Acoustic cell filter for high density perfusion culture of hybridoma cells. Nat Biotechnol 12(3):281–284CrossRefGoogle Scholar
  82. 82.
    Medronho R, Schuetze J, Deckwer W (2005) Numerical simulation of hydrocyclones for cell separation. Lat Am Appl Res 35:1–8Google Scholar
  83. 83.
    Elsayed EA, Wadaan MA (2013) The potential of hydrocyclone application for mammalian cell separation in perfusion cultivation bioreactors. Int J Biotechnol Wellness Industries 2(4):153Google Scholar
  84. 84.
    Jockwer A, Medronho RA, Wagner R, Anspach F, Deckwer W-D (2001) The use of hydrocyclones for mammalian cell retention in perfusion bioreactors. In: Animal Cell Technology: From Target to Market. Springer, pp 301–306Google Scholar
  85. 85.
    Elsayed EA, Medronho R, Wagner R, Deckwer WD (2006) Use of hydrocyclones for mammalian cell retention: separation efficiency and cell viability (Part 1). Eng Life Sci 6(4):347–354CrossRefGoogle Scholar
  86. 86.
    Pinto RC, Medronho RA, Castilho LR (2008) Separation of CHO cells using hydrocyclones. Cytotechnology 56(1):57–67CrossRefPubMedGoogle Scholar
  87. 87.
    Castilho LR, Medronho RA (2008) Animal cell separation. In: Castilho LR, Moraes AM, Augusto EF, Butler M (eds) Animal cell technology: from biopharmaceuticals to gene therapy. Taylor & Francis, New York, pp. 273–294CrossRefGoogle Scholar
  88. 88.
    Elsayed EA, Wagner R (2011) Application of hydrocyclones for continuous cultivation of SP-2/0 cells in perfusion bioreactors: effect of hydrocyclone operating pressure. In: BMC proceedings, 2011. vol Suppl 8. BioMed Central Ltd, p P65Google Scholar
  89. 89.
    Himmelfarb P, Thayer P, Martin H (1969) Spin filter culture: the propagation of mammalian cells in suspension. Science 164(3879):555–557CrossRefPubMedGoogle Scholar
  90. 90.
    Reuveny S, Velez D, Miller L, Macmillan J (1986) Comparison of cell propagation methods for their effect on monoclonal antibody yield in fermentors. J Immunol Methods 86(1):61–69CrossRefGoogle Scholar
  91. 91.
    Tolbert WR, Peder J, Kimes RC (1981) Large-scale rotating filter perfusion system for high-density growth of mammalian suspension cultures. In Vitro 17(10):885–890CrossRefPubMedGoogle Scholar
  92. 92.
    Esclade LR, Carrel S, Péringer P (1991) Influence of the screen material on the fouling of spin filters. Biotechnol Bioeng 38(2):159–168CrossRefPubMedGoogle Scholar
  93. 93.
    Emery A, Jan D-H, Al-Rueai M (1995) Oxygenation of intensive cell-culture system. Appl Microbiol Biotechnol 43(6):1028–1033CrossRefPubMedGoogle Scholar
  94. 94.
    Deo YM, Mahadevan MD, Fuchs R (1996) Practical considerations in operation and scale-up of spin-filter based bioreactors for monoclonal antibody production. Biotechnol Prog 12(1):57–64CrossRefPubMedGoogle Scholar
  95. 95.
    Figueredo-Cardero A, Chico E, Castilho LR, Medronho RA (2009) CFD simulation of an internal spin-filter: evidence of lateral migration and exchange flow through the mesh. Cytotechnology 61(1-2):55–64PubMedCentralCrossRefPubMedGoogle Scholar
  96. 96.
    Yabannavar V, Singh V, Connelly N (1992) Mammalian cell retention in a spinfilter perfusion bioreactor. Biotechnol Bioeng 40(8):925–933CrossRefPubMedGoogle Scholar
  97. 97.
    Avgerinos GC, Drapeau D, Socolow JS, Mao J-i, Hsiao K, Broeze RJ (1990) Spin filter perfusion system for high density cell culture: production of recombinant urinary type plasminogen activator in CHO cells. Nat Biotechnol 8(1):54–58CrossRefGoogle Scholar
  98. 98.
    Castilho LR, Anspach FB, Deckwer WD (2002) An integrated process for mammalian cell perfusion cultivation and product purification using a dynamic filter. Biotechnol Prog 18(4):776–781CrossRefPubMedGoogle Scholar
  99. 99.
    Vallez-Chetreanu F, Ferreira LF, Rabe R, von Stockar U, Marison I (2007) An on-line method for the reduction of fouling of spin-filters for animal cell perfusion cultures. J Biotechnol 130(3):265–273CrossRefPubMedGoogle Scholar
  100. 100.
    Yabannavar V, Singh V, Connelly N (1994) Scaleup of spinfilter perfusion bioreactor for mammalian cell retention. Biotechnol Bioeng 43(2):159–164CrossRefPubMedGoogle Scholar
  101. 101.
    Kyung Y-S, Peshwa MV, Gryte DM, Hu W-S (1994) High density culture of mammalian cells with dynamic perfusion based on on-line oxygen uptake rate measurements. Cytotechnology 14(3):183–190CrossRefPubMedGoogle Scholar
  102. 102.
    Seamans TC, Hu W-S (1990) Kinetics of growth and antibody production by a hybridoma cell line in a perfusion culture. J Ferment Bioeng 70(4):241–245CrossRefGoogle Scholar
  103. 103.
    Brennan AJ, Shevitz J, Macmillan JD (1987) A perfusion system for antibody production by shear-sensitive hybridoma cells in a stirred reactor. Biotechnol Tech 1(3):169–174CrossRefGoogle Scholar
  104. 104.
    de la Broise D, Noiseux M, Lemieux R, Massie B (1991) Long-term perfusion culture of hybridoma: a “grow or die” cell cycle system. Biotechnol Bioeng 38(7):781–787CrossRefPubMedGoogle Scholar
  105. 105.
    Velez D, Miller L, Macmillan JD (1989) Use of tangential flow filtration in perfusion propagation of hybridoma cells for production of monoclonal antibodies. Biotechnol Bioeng 33(7):938–940CrossRefPubMedGoogle Scholar
  106. 106.
    Hiller G, Clark D, Blanch H (1993) Cell retention–chemostat studies of hybridoma cells—analysis of hybridoma growth and metabolism in continuous suspension culture in serum-free medium. Biotechnol Bioeng 42(2):185–195CrossRefPubMedGoogle Scholar
  107. 107.
    Greenfield P, Guillaume J-M, Randerson D, Smith C (1991) Experience in scale-up of homogeneous perfusion culture for hybridomas. Bioprocess Eng 6(5):213–219CrossRefGoogle Scholar
  108. 108.
    Kawahara H, Mitsuda S, Kumazawa E, Takeshita Y (1994) High-density culture of FM-3A cells using a bioreactor with an external tangential-flow filtration device. Cytotechnology 14(1):61–66CrossRefPubMedGoogle Scholar
  109. 109.
    Karst DJ, Serra E, Villiger TK, Soos M, Morbidelli M (2016) Characterization and comparison of ATF and TFF in stirred bioreactors for continuous mammalian cell culture processes. Biochem Eng J 110:17–26CrossRefGoogle Scholar
  110. 110.
    Martin CS, Padilla-Zamudio J, Rank D, McInnis P, Kozlov M, Reynolds S, Parella J, Madrid L (2015) Novel small scale TFF cell retention device for perfusion cell culture systems. In: Gòdia F (ed) 24th European Society for Animal Cell Technology (ESACT) Meeting, Barcelona, Spain, 31 May–3 Jun 2015. vol 9, p 1PubMedCentralCrossRefGoogle Scholar
  111. 111.
    Clincke MF, Mölleryd C, Zhang Y, Lindskog E, Walsh K, Chotteau V (2013) Very high density of CHO cells in perfusion by ATF or TFF in WAVE bioreactor. Part I Effect of the cell density on the process. Biotechnol Prog 29(3):754–767PubMedCentralCrossRefPubMedGoogle Scholar
  112. 112.
    Kelly W, Scully J, Zhang D, Feng G, Lavengood M, Condon J, Knighton J, Bhatia R (2014) Understanding and modeling alternating tangential flow filtration for perfusion cell culture. Biotechnol Prog 30(6):1291–1300CrossRefPubMedGoogle Scholar
  113. 113.
    Xu S, Chen H (2016) High-density mammalian cell cultures in stirred-tank bioreactor without external pH control. J Biotechnol 231:149–159CrossRefPubMedGoogle Scholar
  114. 114.
    Padawer I, Ling WLW, Bai Y (2013) Case study: an accelerated 8-day monoclonal antibody production process based on high seeding densities. Biotechnol Prog 29(3):829–832CrossRefPubMedGoogle Scholar
  115. 115.
    Wright B, Bruninghaus M, Vrabel M, Walther J, Shah N, Bae S, Johnson T, Yin J, Zhou W, Konstantinov K (2015) A novel seed-train process: using high-density cell banking, a disposable bioreactor, and perfusion technologies. Bioprocess Int 13Google Scholar
  116. 116.
    Yang WC, Lu J, Kwiatkowski C, Yuan H, Kshirsagar R, Ryll T, Huang YM (2014) Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality. Biotechnol Prog 30(3):616–625CrossRefPubMedGoogle Scholar
  117. 117.
    Tao Y, Shih J, Sinacore M, Ryll T, Yusuf-Makagiansar H (2011) Development and implementation of a perfusion-based high cell density cell banking process. Biotechnol Prog 27(3):824–829CrossRefPubMedGoogle Scholar
  118. 118.
    Adams T, Noack U, Frick T, Greller G, Fenge C (2011) Increasing efficiency in protein and cell production by combining single-use bioreactor technology and perfusion. BioPharm Int 24:s4–s11Google Scholar
  119. 119.
    Tang YJ, Ohashi R, Hamel JFP (2007) Perfusion culture of hybridoma cells for hyperproduction of IgG2a monoclonal antibody in a wave bioreactor-perfusion culture system. Biotechnol Prog 23(1):255–264CrossRefPubMedGoogle Scholar
  120. 120.
    Roth G, Smith CE, Schoofs GM, Montgomery TJ, Ayala JL, Horwitz JI (1997) Using an external vortex flow filtration device for perfusion cell culture. Pharm Technol 21(10)Google Scholar
  121. 121.
    Konstantinov KB, Goudar C, Ng M, Meneses R, Thrift J, Chuppa S, Matanguihan C, Michaels J, Naveh D (2006) The “push-to-low” approach for optimization of high-density perfusion cultures of animal cells. In: Scheper T, Hu W-S (eds) Advances in biochemical engineering/biotechnology: cell culture engineering. Springer, Berlin, pp. 75–98Google Scholar
  122. 122.
    Goudar CT, Matanguihan R, Long E, Cruz C, Zhang C, Piret JM, Konstantinov KB (2007) Decreased pCO2 accumulation by eliminating bicarbonate addition to high cell-density cultures. Biotechnol Bioeng 96(6):1107–1117CrossRefPubMedGoogle Scholar
  123. 123.
    Ducommun P, Bolzonella I, Rhiel M, Pugeaud P, Von Stockar U, Marison I (2001) On-line determination of animal cell concentration. Biotechnol Bioeng 72(5):515–522CrossRefPubMedGoogle Scholar
  124. 124.
    Konstantinov KB, Ys T, Moles D, Matanguihan R (1996) Control of long-term perfusion chinese hamster ovary cell culture by glucose auxostat. Biotechnol Prog 12(1):100–109CrossRefPubMedGoogle Scholar
  125. 125.
    Meuwly F, Papp F, Ruffieux P-A, Bernard A, Kadouri A, Von Stockar U (2006) Use of glucose consumption rate (GCR) as a tool to monitor and control animal cell production processes in packed-bed bioreactors. J Biotechnol 122(1):122–129CrossRefPubMedGoogle Scholar
  126. 126.
    Ozturk S, Thrift J, Blackie J, Naveh D (1997) Real-time monitoring and control of glucose and lactate concentrations in a mammalian cell perfusion reactor. Biotechnol Bioeng 53(4):372–378CrossRefPubMedGoogle Scholar
  127. 127.
    Carvell JP, Dowd JE (2006) On-line measurements and control of viable cell density in cell culture manufacturing processes using radio-frequency impedance. Cytotechnology 50(1-3):35–48PubMedCentralCrossRefPubMedGoogle Scholar
  128. 128.
    Noll T, Biselli M (1998) Dielectric spectroscopy in the cultivation of suspended and immobilized hybridoma cells. J Biotechnol 63(3):187–198CrossRefPubMedGoogle Scholar
  129. 129.
    Abu-Absi NR, Kenty BM, Cuellar ME, Borys MC, Sakhamuri S, Strachan DJ, Hausladen MC, Li ZJ (2011) Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. Biotechnol Bioeng 108(5):1215–1221CrossRefGoogle Scholar
  130. 130.
    Whelan J, Craven S, Glennon B (2012) In situ Raman spectroscopy for simultaneous monitoring of multiple process parameters in mammalian cell culture bioreactors. Biotechnol Prog 28(5):1355–1362CrossRefPubMedGoogle Scholar
  131. 131.
    Kim BJ, Oh DJ, Chang HN (2008) Limited use of Centritech Lab II centrifuge in perfusion culture of rCHO cells for the production of recombinant antibody. Biotechnol Prog 24(1):166–174CrossRefPubMedGoogle Scholar
  132. 132.
    Knaack C, André G, Chavarie C (1994) Conical bioreactor with internal lamella settler for perfusion culture of suspension cells. In: Spier R, Griffiths J, Berthold W (eds) Animal cell technology: products of today. Prospects for tomorrow. Butterworth-Heinemann, Oxford, pp. 230–233CrossRefGoogle Scholar
  133. 133.
    Mercille S, Johnson M, Lemieux R, Massie B (1994) Filtration-based perfusion of hybridoma cultures in protein-free medium: reduction of membrane fouling by medium supplementation with DNase I. Biotechnol Bioeng 43(9):833–846CrossRefPubMedGoogle Scholar
  134. 134.
    Mette K, Lassen K, Emborg C (1994) Perfusion systems for hybridoma cells based on sedimentation in chambers and erlenmeyer flasks. FEMS Microbiol Rev 14(1):89–91CrossRefGoogle Scholar
  135. 135.
    Gottschalk U (2008) Bioseparation in antibody manufacturing: the good, the bad and the ugly. Biotechnol Prog 24(3):496–503CrossRefPubMedGoogle Scholar
  136. 136.
    Vogel JH, Nguyen H, Pritschet M, Van Wegen R, Konstantinov K (2002) Continuous annular chromatography: general characterization and application for the isolation of recombinant protein drugs. Biotechnol Bioeng 80(5):559–568CrossRefPubMedGoogle Scholar
  137. 137.
    Bridges S, Barker P (1992) Continuous cross-current chromatographic refiners. In: Ganetsos G, Barker P (eds) Preparative and production scale chromatography, vol 61. Marcel Dekker, Inc., New York, NY, pp. 113–126Google Scholar
  138. 138.
    Martin AJP (1949) Summarizing paper. Discuss Faraday Soc 7:332–336CrossRefGoogle Scholar
  139. 139.
    Giddings J (1962) Theory of minimum time operation in gas chromatography. Anal Chem 34(3):314–319CrossRefGoogle Scholar
  140. 140.
    Fox J (1969) Continuous chromatography apparatus: II. Operation. J Chromatogr A 43:55–60CrossRefGoogle Scholar
  141. 141.
    Fox J, Calhoun R, Eglinton W (1969) Continuous chromatography apparatus: I. Construction. J Chromatogr A 43:48–54CrossRefGoogle Scholar
  142. 142.
    Nicholas R, Fox J (1969) Continuous chromatography apparatus: III. Application. J Chromatogr A 43:61–65CrossRefGoogle Scholar
  143. 143.
    Bloomingburg GF, Carta G (1994) Separation of protein mixtures by continuous annular chromatography with step elution. Chem Eng J 55(1-2):B19–B27Google Scholar
  144. 144.
    Giovannini R, Freitag R (2001) Isolation of a recombinant antibody from cell culture supernatant: continuous annular versus batch and expanded-bed chromatography. Biotechnol Bioeng 73(6):522–529CrossRefPubMedGoogle Scholar
  145. 145.
    Takahashi Y, Goto S (1991) Continuous separations of amino acids by using an annular chromatograph with rotating inlet and outlet. Sep Sci Technol 26(1):1–13CrossRefGoogle Scholar
  146. 146.
    Hilbrig F, Freitag R (2003) Continuous annular chromatography. J Chromatogr B 790(1):1–15CrossRefGoogle Scholar
  147. 147.
    Bloomingburg GF, Bauer JS, Carta G, Byers CH (1991) Continuous separation of proteins by annular chromatography. Ind Eng Chem Res 30(5):1061–1067CrossRefGoogle Scholar
  148. 148.
    Byers CH, Sisson WG, Decarli JP, Carta G (1990) Sugar separations on a pilot scale by continuous annular chromatography. Biotechnol Prog 6(1):13–20CrossRefGoogle Scholar
  149. 149.
    Scott CD, Spence RD, Sisson WG (1976) Pressurized, annular chromatograph for continuous separations. J Chromatogr A 126:381–400CrossRefGoogle Scholar
  150. 150.
    De Carli JP, Carta G, Byers CH (1990) Displacement separations by continuous annular chromatography. AICHE J 36(8):1220–1228CrossRefGoogle Scholar
  151. 151.
    Buchacher A, Iberer G, Jungbauer A, Schwinn H, Josic D (2001) Continuous removal of protein aggregates by annular chromatography. Biotechnol Prog 17(1):140–149CrossRefPubMedGoogle Scholar
  152. 152.
    Iberer G, Schwinn H, Josić D, Jungbauer A, Buchacher A (2001) Improved performance of protein separation by continuous annular chromatography in the size-exclusion mode. J Chromatogr A 921(1):15–24CrossRefPubMedGoogle Scholar
  153. 153.
    Sisson W, Begovich J, Byers C, Scott C (1987) Application of continuous annular chromatography to size-exclusion separations. Paper presented at the American Chemical Society national meeting, New Orleans, 30 August 1987Google Scholar
  154. 154.
    Uretschlaeger A, Jungbauer A (2002) Two separation modes combined in one column: sequential ion-exchange separation and size-exclusion chromatography of green fluorescent protein. Sep Sci Technol 37(7):1683–1697CrossRefGoogle Scholar
  155. 155.
    Besselink T, van der Padt A, Janssen AE, Boom RM (2013) Are axial and radial flow chromatography different? J Chromatogr A 1271(1):105–114CrossRefPubMedGoogle Scholar
  156. 156.
    Gu T (2009) Chromatography, radial flow. Encyclopedia of Bioprocess Technology, InCrossRefGoogle Scholar
  157. 157.
    Cabanne C, Raedts M, Zavadzky E, Santarelli X (2007) Evaluation of radial chromatography versus axial chromatography, practical approach. J Chromatogr B 845(2):191–199CrossRefGoogle Scholar
  158. 158.
    Kinna A, Tolner B, Rota EM, Titchener-Hooker N, Nesbeth D, Chester K (2016) IMAC capture of recombinant protein from unclarified mammalian cell feed streams. Biotechnol Bioeng 113(1):130–140CrossRefPubMedGoogle Scholar
  159. 159.
    Sun T, Chen G, Liu Y, Bu F, Wen M (2000) Chromatography of human prothrombin from Nitschmann fraction III on DEAE Sepharose Fast Flow using axial and radial flow column. Biomed Chromatogr 14(7):478–482CrossRefPubMedGoogle Scholar
  160. 160.
    Weaver K, Chen D, Walton L, Elwell L, Ray P (1990) Uridine phosphorylase purified from total crude extracts of E. coli using Q Sepharose and radial-flow chromatography. BioPharm 3(7):25–28Google Scholar
  161. 161.
    Gu T, Tsai G-J, Tsao GT (1991) A theoretical study of multicomponent radial flow chromatography. Chem Eng Sci 46(5):1279–1288CrossRefGoogle Scholar
  162. 162.
    Huang SH, Lee W-C, Tsao GT (1988) Mathematical models of radial chromatography. Chem Eng J 38(3):179–186CrossRefGoogle Scholar
  163. 163.
    Tharakan J, Belizaire M (1995) Ligand efficiency in axial and radial flow immunoaffinity chromatography of factor IX. J Chromatogr A 702(1):191–196CrossRefGoogle Scholar
  164. 164.
    Lay M, Fee C, Swan J (2006) Continuous radial flow chromatography of proteins. Food Bioprod Process 84(1):78–83CrossRefGoogle Scholar
  165. 165.
    Broughton DB, Gerhold CG (1961) Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets. US Patent 2,985,589Google Scholar
  166. 166.
    Juza M, Mazzotti M, Morbidelli M (2000) Simulated moving-bed chromatography and its application to chirotechnology. Trends Biotechnol 18(3):108–118CrossRefPubMedGoogle Scholar
  167. 167.
    Rodrigues AE, Pereira C, Minceva M, Pais L, Ribeiro AM, Ribeiro A, Silva M, Graça N, Santos JC (2015) Simulated moving bed technology: principles, design and process applications. Elsevier, OxfordGoogle Scholar
  168. 168.
    Xie Y, Mun S, Kim J, Wang NHL (2002) Standing wave design and experimental validation of a tandem simulated moving bed process for insulin purification. Biotechnol Prog 18(6):1332–1344CrossRefPubMedGoogle Scholar
  169. 169.
    Low D, O’Leary R, Pujar NS (2007) Future of antibody purification. J Chromatogr B 848(1):48–63CrossRefGoogle Scholar
  170. 170.
    Imamoglu S (2002) Simulated moving bed chromatography (SMB) for application in bioseparation. Modern Advances in Chromatography. Springer, In, pp. 211–231Google Scholar
  171. 171.
    Mun S, Xie Y, Kim J-H, Wang N-HL (2003) Optimal design of a size-exclusion tandem simulated moving bed for insulin purification. Ind Eng Chem Res 42(9):1977–1993CrossRefGoogle Scholar
  172. 172.
    Rajendran A, Paredes G, Mazzotti M (2009) Simulated moving bed chromatography for the separation of enantiomers. J Chromatogr A 1216(4):709–738CrossRefPubMedGoogle Scholar
  173. 173.
    Xie Y, Koo Y-M, Wang N-HL (2001) Preparative chromatographic separation: simulated moving bed and modified chromatography methods. Biotechnol Bioprocess Eng 6(6):363–375CrossRefGoogle Scholar
  174. 174.
    Gottschlich N, Kasche V (1997) Purification of monoclonal antibodies by simulated moving-bed chromatography. J Chromatogr A 765(2):201–206CrossRefPubMedGoogle Scholar
  175. 175.
    Keβler LC, Gueorguieva L, Rinas U, Seidel-Morgenstern A (2007) Step gradients in 3-zone simulated moving bed chromatography: application to the purification of antibodies and bone morphogenetic protein-2. J Chromatogr A 1176(1):69–78CrossRefGoogle Scholar
  176. 176.
    Kröber T, Wolff MW, Hundt B, Seidel-Morgenstern A, Reichl U (2013) Continuous purification of influenza virus using simulated moving bed chromatography. J Chromatogr A 1307:99–110CrossRefPubMedGoogle Scholar
  177. 177.
    Andersson J, Mattiasson B (2006) Simulated moving bed technology with a simplified approach for protein purification: separation of lactoperoxidase and lactoferrin from whey protein concentrate. J Chromatogr A 1107(1):88–95CrossRefPubMedGoogle Scholar
  178. 178.
    Aniceto JP, Silva CM (2015) Simulated moving bed strategies and designs: from established systems to the latest developments. Sep Purif Rev 44(1):41–73CrossRefGoogle Scholar
  179. 179.
    Mahajan E, George A, Wolk B (2012) Improving affinity chromatography resin efficiency using semi-continuous chromatography. J Chromatogr A 1227:154–162CrossRefPubMedGoogle Scholar
  180. 180.
    Godawat R, Brower K, Jain S, Konstantinov K, Riske F, Warikoo V (2012) Periodic counter-current chromatography–design and operational considerations for integrated and continuous purification of proteins. Biotechnol J 7(12):1496–1508CrossRefPubMedGoogle Scholar
  181. 181.
    Angarita M, Müller-Späth T, Baur D, Lievrouw R, Lissens G, Morbidelli M (2015) Twin-column CaptureSMB: a novel cyclic process for protein A affinity chromatography. J Chromatogr A 1389:85–95CrossRefPubMedGoogle Scholar
  182. 182.
    Baur D, Angarita M, Müller-Späth T, Steinebach F, Morbidelli M (2016) Comparison of batch and continuous multi-column protein A capture processes by optimal design. Biotechnol J 11:920–931CrossRefPubMedGoogle Scholar
  183. 183.
    Girard V, Hilbold N-J, Ng CK, Pegon L, Chahim W, Rousset F, Monchois V (2015) Large-scale monoclonal antibody purification by continuous chromatography, from process design to scale-up. J Biotechnol 213:65–73CrossRefPubMedGoogle Scholar
  184. 184.
    Bisschops M (2014) BioSMB technology as an enabler for a fully continuous disposable biomanufacturing platform. In: Subramanian G (ed) Continuous processing in pharmaceutical manufacturing. Wiley-VCH, Weinheim, pp. 35–52Google Scholar
  185. 185.
    Grabski A, Mierendorf R (2009) Simulated moving bed chromatography. Genet Eng Biotechnol News 29(18):54–55Google Scholar
  186. 186.
    Shinkazh O (2011) Countercurrent tangential chromatography methods, systems, and apparatus. US Patent 7,988,859Google Scholar
  187. 187.
    Dutta AK, Tan J, Napadensky B, Zydney AL, Shinkazh O (2016) Performance optimization of continuous countercurrent tangential chromatography for antibody capture. Biotechnol Prog 32:430–439CrossRefPubMedGoogle Scholar
  188. 188.
    Shinkazh O, Kanani D, Barth M, Long M, Hussain D, Zydney AL (2011) Countercurrent tangential chromatography for large-scale protein purification. Biotechnol Bioeng 108(3):582–591CrossRefPubMedGoogle Scholar
  189. 189.
    Napadensky B, Shinkazh O, Teella A, Zydney AL (2013) Continuous countercurrent tangential chromatography for monoclonal antibody purification. Sep Sci Technol 48(9):1289–1297CrossRefGoogle Scholar
  190. 190.
    Dutta AK, Tran T, Napadensky B, Teella A, Brookhart G, Ropp PA, Zhang AW, Tustian AD, Zydney AL, Shinkazh O (2015) Purification of monoclonal antibodies from clarified cell culture fluid using Protein A capture continuous countercurrent tangential chromatography. J Biotechnol 213:54–64PubMedCentralCrossRefPubMedGoogle Scholar
  191. 191.
    Aumann L, Morbidelli M (2007) A continuous multicolumn countercurrent solvent gradient purification (MCSGP) process. Biotechnol Bioeng 98(5):1043–1055CrossRefPubMedGoogle Scholar
  192. 192.
    Müller-Späth T, Aumann L, Melter L, Ströhlein G, Morbidelli M (2008) Chromatographic separation of three monoclonal antibody variants using multicolumn countercurrent solvent gradient purification (MCSGP). Biotechnol Bioeng 100(6):1166–1177CrossRefPubMedGoogle Scholar
  193. 193.
    Aumann L, Morbidelli M (2008) A semicontinuous 3-column countercurrent solvent gradient purification (MCSGP) process. Biotechnol Bioeng 99(3):728–733CrossRefPubMedGoogle Scholar
  194. 194.
    Müller-Späth T, Krättli M, Aumann L, Ströhlein G, Morbidelli M (2010) Increasing the activity of monoclonal antibody therapeutics by continuous chromatography (MCSGP). Biotechnol Bioeng 107(4):652–662CrossRefPubMedGoogle Scholar
  195. 195.
    Müller-Späth T, Aumann L, Ströhlein G, Kornmann H, Valax P, Delegrange L, Charbaut E, Baer G, Lamproye A, Jöhnck M (2010) Two step capture and purification of IgG2 using multicolumn countercurrent solvent gradient purification (MCSGP). Biotechnol Bioeng 107(6):974–984CrossRefPubMedGoogle Scholar
  196. 196.
    Liu HF, Ma J, Winter C, Bayer R (2010) Recovery and purification process development for monoclonal antibody production. mAbs 2(5):480–499PubMedCentralCrossRefPubMedGoogle Scholar
  197. 197.
    Weaver J, Husson SM, Murphy L, Wickramasinghe SR (2013) Anion exchange membrane adsorbers for flow-through polishing steps: part I. Clearance of minute virus of mice. Biotechnol Bioeng 110(2):491–499CrossRefPubMedGoogle Scholar
  198. 198.
    Boi C (2007) Membrane adsorbers as purification tools for monoclonal antibody purification. J Chromatogr B 848(1):19–27CrossRefGoogle Scholar
  199. 199.
    Zhou JX, Tressel T, Yang X, Seewoester T (2008) Implementation of advanced technologies in commercial monoclonal antibody production. Biotechnol J 3(9-10):1185–1200CrossRefPubMedGoogle Scholar
  200. 200.
    Etzel MR, Riordan WT (2009) Viral clearance using monoliths. J Chromatogr A 1216(13):2621–2624CrossRefPubMedGoogle Scholar
  201. 201.
    Rajamanickam V, Herwig C, Spadiut O (2015) Monoliths in bioprocess technology. Chromatography 2(2):195–212CrossRefGoogle Scholar
  202. 202.
    Van Reis R, Zydney A (2001) Membrane separations in biotechnology. Curr Opin Biotechnol 12(2):208–211CrossRefGoogle Scholar
  203. 203.
    Anspach FB, Curbelo D, Hartmann R, Garke G, Deckwer W-D (1999) Expanded-bed chromatography in primary protein purification. J Chromatogr A 865(1):129–144CrossRefPubMedGoogle Scholar
  204. 204.
    Chase HA (1994) Purification of proteins by adsorption chromatography in expanded beds. Trends Biotechnol 12(8):296–303CrossRefPubMedGoogle Scholar
  205. 205.
    Gagnon P (2012) Technology trends in antibody purification. J Chromatogr A 1221:57–70CrossRefPubMedGoogle Scholar
  206. 206.
    Thömmes J (1997) Fluidized bed adsorption as a primary recovery step in protein purification. In: Scheper T (ed) New enzymes for organic synthesis. Springer, Berlin, pp. 185–230CrossRefGoogle Scholar
  207. 207.
    Chhatre S, Francis R, O’Donovan K, Titchener-Hooker N, Newcombe A, Keshavarz-Moore E (2007) A decision-support model for evaluating changes in biopharmaceutical manufacturing processes. Bioprocess Biosyst Eng 30(1):1–11CrossRefPubMedGoogle Scholar
  208. 208.
    Farid SS (2007) Process economics of industrial monoclonal antibody manufacture. J Chromatogr B 848(1):8–18CrossRefGoogle Scholar
  209. 209.
    Lin D-Q, Tong H-F, van de Sandt EJ, den Boer P, Golubović M, Yao S-J (2013) Evaluation and characterization of axial distribution in expanded bed. I. Bead size, bead density and local bed voidage. J Chromatogr A 1304:78–84CrossRefPubMedGoogle Scholar
  210. 210.
    Zhao J, Yao S, Lin D (2009) Adsorbents for expanded bed adsorption: preparation and functionalization. Chin J Chem Eng 17(4):678–687CrossRefGoogle Scholar
  211. 211.
    Feuser J, Halfar M, Lütkemeyer D, Ameskamp N, Kula M-R, Thömmes J (1999) Interaction of mammalian cell culture broth with adsorbents in expanded bed adsorption of monoclonal antibodies. Process Biochem 34(2):159–165CrossRefGoogle Scholar
  212. 212.
    Özyurt S, Kirdar B, Ülgen KÖ (2002) Recovery of antithrombin III from milk by expanded bed chromatography. J Chromatogr A 944(1):203–210CrossRefPubMedGoogle Scholar
  213. 213.
    Smith M, Bulmer M, Hjorth R, Titchener-Hooker N (2002) Hydrophobic interaction ligand selection and scale-up of an expanded bed separation of an intracellular enzyme from Saccharomyces cerevisiae. J Chromatogr A 968(1):121–128CrossRefPubMedGoogle Scholar
  214. 214.
    Owen RO, Chase HA (1997) Direct purification of lysozyme using continuous counter-current expanded bed adsorption. J Chromatogr A 757(1):41–49CrossRefPubMedGoogle Scholar
  215. 215.
    Owen RO, Chase HA (1999) Modeling of the continuous counter-current expanded bed adsorber for the purification of proteins. Chem Eng Sci 54(17):3765–3781CrossRefGoogle Scholar
  216. 216.
    McNerney T, Thomas A, Senczuk A, Petty K, Zhao X, Piper R, Carvalho J, Hammond M, Sawant S, Bussiere J (2015) PDADMAC flocculation of Chinese hamster ovary cells: enabling a centrifuge-less harvest process for monoclonal antibodies. mAbs 7(2):413–427PubMedCentralCrossRefPubMedGoogle Scholar
  217. 217.
    Roush DJ, Lu Y (2008) Advances in primary recovery: centrifugation and membrane technology. Biotechnol Prog 24(3):488–495CrossRefPubMedGoogle Scholar
  218. 218.
    Brodsky Y, Zhang C, Yigzaw Y, Vedantham G (2012) Caprylic acid precipitation method for impurity reduction: an alternative to conventional chromatography for monoclonal antibody purification. Biotechnol Bioeng 109(10):2589–2598CrossRefPubMedGoogle Scholar
  219. 219.
    Ito Y, Qi L (2010) Centrifugal precipitation chromatography. J Chromatogr B 878(2):154–164CrossRefGoogle Scholar
  220. 220.
    Lydersen BK, Brehm-Gibson T, Murel A (1994) Acid precipitation of mammalian cell fermentation broth. Ann N Y Acad Sci 745(1):222–231CrossRefPubMedGoogle Scholar
  221. 221.
    Sommer R, Satzer P, Tscheliessnig A, Schulz H, Helk B, Jungbauer A (2014) Combined polyethylene glycol and CaCl2 precipitation for the capture and purification of recombinant antibodies. Process Biochem 49(11):2001–2009CrossRefGoogle Scholar
  222. 222.
    Tscheliessnig A, Satzer P, Hammerschmidt N, Schulz H, Helk B, Jungbauer A (2014) Ethanol precipitation for purification of recombinant antibodies. J Biotechnol 188:17–28CrossRefPubMedGoogle Scholar
  223. 223.
    Kang YK, Hamzik J, Felo M, Qi B, Lee J, Ng S, Liebisch G, Shanehsaz B, Singh N, Persaud K (2013) Development of a novel and efficient cell culture flocculation process using a stimulus responsive polymer to streamline antibody purification processes. Biotechnol Bioeng 110(11):2928–2937CrossRefPubMedGoogle Scholar
  224. 224.
    Riske F, Schroeder J, Belliveau J, Kang X, Kutzko J, Menon MK (2007) The use of chitosan as a flocculant in mammalian cell culture dramatically improves clarification throughput without adversely impacting monoclonal antibody recovery. J Biotechnol 128(4):813–823CrossRefPubMedGoogle Scholar
  225. 225.
    Singh N, Arunkumar A, Chollangi S, Tan ZG, Borys M, Li ZJ (2015) Clarification technologies for monoclonal antibody manufacturing processes: current state and future perspectives. Biotechnol Bioeng 113(4):698–716CrossRefPubMedGoogle Scholar
  226. 226.
    Buchacher A, Iberer G (2006) Purification of intravenous immunoglobulin G from human plasma–aspects of yield and virus safety. Biotechnol J 1(2):148–163CrossRefPubMedGoogle Scholar
  227. 227.
    Bell D, Hoare M, Dunnill P (1983) The formation of protein precipitates and their centrifugal recovery. In: Downstream processing. Springer, pp 1–72Google Scholar
  228. 228.
    Watt J (1970) Automatically controlled continuous recovery of plasma protein fractions for clinical use: a preliminary report. Vox Sang 18(1):42–61PubMedGoogle Scholar
  229. 229.
    Chang CE (1988) Continuous fractionation of human plasma proteins by precipitation from the suspension of the recycling stream. Biotechnol Bioeng 31(8):841–846CrossRefPubMedGoogle Scholar
  230. 230.
    Hammerschmidt N, Hintersteiner B, Lingg N, Jungbauer A (2015) Continuous precipitation of IgG from CHO cell culture supernatant in a tubular reactor. Biotechnol J 10(8):1196–1205CrossRefPubMedGoogle Scholar
  231. 231.
    Hammerschmidt N, Hobiger S, Jungbauer A (2016) Continuous polyethylene glycol precipitation of recombinant antibodies: sequential precipitation and resolubilization. Process Biochem 51(2):325–332CrossRefGoogle Scholar
  232. 232.
    Warikoo V, Godawat R (2015) A new use for existing technology–continuous precipitation for purification of recombination proteins. Biotechnol J 10(8):1101–1102CrossRefPubMedGoogle Scholar
  233. 233.
    Azevedo AM, Gomes AG, Rosa PA, Ferreira IF, Pisco AM, Aires-Barros MR (2009) Partitioning of human antibodies in polyethylene glycol–sodium citrate aqueous two-phase systems. Sep Purif Technol 65(1):14–21CrossRefGoogle Scholar
  234. 234.
    Gomes GA, Azevedo AM, Aires-Barros MR, Prazeres DMF (2009) Purification of plasmid DNA with aqueous two phase systems of PEG 600 and sodium citrate/ammonium sulfate. Sep Purif Technol 65(1):22–30CrossRefGoogle Scholar
  235. 235.
    Haraguchi L, Mohamed R, Loh W, Pessôa Filho P (2004) Phase equilibrium and insulin partitioning in aqueous two-phase systems containing block copolymers and potassium phosphate. Fluid Phase Equilibria 215(1):1–15CrossRefGoogle Scholar
  236. 236.
    Kumar A, Kamihira M, Galaev IY, Mattiasson B, Iijima S (2001) Type-specific separation of animal cells in aqueous two-phase systems using antibody conjugates with temperature-sensitive polymers. Biotechnol Bioeng 75(5):570–580CrossRefPubMedGoogle Scholar
  237. 237.
    Mashayekhi F, Meyer AS, Shiigi SA, Nguyen V, Kamei DT (2009) Concentration of mammalian genomic DNA using two-phase aqueous micellar systems. Biotechnol Bioeng 102(6):1613–1623CrossRefPubMedGoogle Scholar
  238. 238.
    Rosa PA, Ferreira I, Azevedo A, Aires-Barros M (2010) Aqueous two-phase systems: a viable platform in the manufacturing of biopharmaceuticals. J Chromatogr A 1217(16):2296–2305CrossRefPubMedGoogle Scholar
  239. 239.
    Hart RA, Lester PM, Reifsnyder DH, Ogez JR, Builder SE (1994) Large scale, in situ isolation of periplasmic IGF–I from E. coli. Nat Biotechnol 12(11):1113–1117CrossRefGoogle Scholar
  240. 240.
    Azevedo AM, Rosa PA, Ferreira IF, Aires-Barros MR (2009) Chromatography-free recovery of biopharmaceuticals through aqueous two-phase processing. Trends Biotechnol 27(4):240–247CrossRefGoogle Scholar
  241. 241.
    Ruiz-Ruiz F, Benavides J, Aguilar O, Rito-Palomares M (2012) Aqueous two-phase affinity partitioning systems: current applications and trends. J Chromatogr A 1244:1–13CrossRefGoogle Scholar
  242. 242.
    Kula MR, Selber K (2002) Protein purification, aqueous liquid extraction. Encyclopedia of Bioprocess TechnologyGoogle Scholar
  243. 243.
    Vázquez-Villegas P, Aguilar O, Rito-Palomares M (2015) Continuous enzyme aqueous two-phase extraction using a novel tubular mixer-settler in multi-step counter-current arrangement. Sep Purif Technol 141:263–268CrossRefGoogle Scholar
  244. 244.
    Espitia-Saloma E, Vázquez-Villegas P, Aguilar O, Rito-Palomares M (2014) Continuous aqueous two-phase systems devices for the recovery of biological products. Food Bioprod Process 92(2):101–112CrossRefGoogle Scholar
  245. 245.
    Muendges J, Zalesko A, Górak A, Zeiner T (2015) Multistage aqueous two-phase extraction of a monoclonal antibody from cell supernatant. Biotechnol Prog 31(4):925–936CrossRefPubMedGoogle Scholar
  246. 246.
    Rosa PA, Azevedo A, Sommerfeld S, Bäcker W, Aires-Barros M (2012) Continuous aqueous two-phase extraction of human antibodies using a packed column. J Chromatogr B 880:148–156CrossRefGoogle Scholar
  247. 247.
    Espitia-Saloma E, Vâzquez-Villegas P, Rito-Palomares M, Aguilar O (2016) An integrated practical implementation of continuous aqueous two-phase systems for the recovery of human IgG: from the microdevice to a multistage bench-scale mixer-settler device. Biotechnol J 11(5):708–716CrossRefPubMedGoogle Scholar
  248. 248.
    Rosa PA, Azevedo A, Sommerfeld S, Mutter M, Aires-Barros M, Bäcker W (2009) Application of aqueous two-phase systems to antibody purification: a multi-stage approach. J Biotechnol 139(4):306–313CrossRefPubMedGoogle Scholar
  249. 249.
    Eggersgluess JK, Richter M, Dieterle M, Strube J (2014) Multi-stage aqueous two-phase extraction for the purification of monoclonal antibodies. Chem Eng Technol 37(4):675–682CrossRefGoogle Scholar
  250. 250.
    Rosa PA, Azevedo AM, Sommerfeld S, Mutter M, Bäcker W, Aires-Barros MR (2013) Continuous purification of antibodies from cell culture supernatant with aqueous two-phase systems: from concept to process. Biotechnol J 8(3):352–362CrossRefPubMedGoogle Scholar
  251. 251.
    de los Reyes G, Mir L (2008) Method and apparatus for the filtration of biological solutions. US Patent 7,384,549Google Scholar
  252. 252.
    Casey C, Gallos T, Alekseev Y, Ayturk E, Pearl S (2011) Protein concentration with single-pass tangential flow filtration (SPTFF). J Membr Sci 384(1):82–88CrossRefGoogle Scholar
  253. 253.
    Dizon-Maspat J, Bourret J, D'Agostini A, Li F (2012) Single pass tangential flow filtration to debottleneck downstream processing for therapeutic antibody production. Biotechnol Bioeng 109(4):962–970CrossRefPubMedGoogle Scholar
  254. 254.
    Teske CA, Lebreton B, van Reis R (2010) Inline ultrafiltration. Biotechnol Prog 26(4):1068–1072PubMedGoogle Scholar
  255. 255.
    Peeva L, da Silva BJ, Valtcheva I, Livingston AG (2014) Continuous purification of active pharmaceutical ingredients using multistage organic solvent nanofiltration membrane cascade. Chem Eng Sci 116:183–194CrossRefGoogle Scholar
  256. 256.
    Lightfoot EN (2005) Can membrane cascades replace chromatography? Adapting binary ideal cascade theory of systems of two solutes in a single solvent. Sep Sci Technol 40(4):739–756CrossRefGoogle Scholar
  257. 257.
    Mayani M, Filipe CD, Ghosh R (2010) Cascade ultrafiltration systems—integrated processes for purification and concentration of lysozyme. J Membr Sci 347(1):150–158CrossRefGoogle Scholar
  258. 258.
    Mohanty K, Ghosh R (2008) Novel tangential-flow countercurrent cascade ultrafiltration configuration for continuous purification of humanized monoclonal antibody. J Membr Sci 307(1):117–125CrossRefGoogle Scholar
  259. 259.
    Lightfoot EN, Root TW, O’Dell JL (2008) Emergence of ideal membrane cascades for downstream processing. Biotechnol Prog 24(3):599–605CrossRefPubMedGoogle Scholar
  260. 260.
    Siew WE, Livingston AG, Ates C, Merschaert A (2013) Molecular separation with an organic solvent nanofiltration cascade–augmenting membrane selectivity with process engineering. Chem Eng Sci 90:299–310CrossRefGoogle Scholar
  261. 261.
    Kurnik RT, Yu AW, Blank GS, Burton AR, Smith D, Athalye AM, van Reis R (1995) Buffer exchange using size exclusion chromatography, countercurrent dialysis, and tangential flow filtration: models, development, and industrial application. Biotechnol Bioeng 45(2):149–157CrossRefPubMedGoogle Scholar
  262. 262.
    Schwan P, Lenz L-P, Baumarth K, Lobedann M (2015) Ultrafiltration unit for continuous buffer or media exchange from a protein solution. WIPO Patent WO2015121403Google Scholar
  263. 263.
    De Meyer L, Van Bockstal P-J, Corver J, Vervaet C, Remon J, De Beer T (2015) Evaluation of spin freezing versus conventional freezing as part of a continuous pharmaceutical freeze-drying concept for unit doses. Int J Pharm 496(1):75–85CrossRefPubMedGoogle Scholar
  264. 264.
    Weisselberg E (2013) Apparatus and method for continuous lyophilization. US Patent 8,528,225Google Scholar
  265. 265.
    Rey L (2010) Glimpses into the realm of freeze-drying: classical issues and new ventures. In: Rey L, May JC (eds) Freeze drying/lyophilization of pharmaceutical and biological products. Informa Healthcare, London, pp. 1–28Google Scholar
  266. 266.
    Peters J, Minuth T, Schröder W (2005) Implementation of a crystallization step into the purification process of a recombinant protein. Protein Expr Purif 39(1):43–53CrossRefPubMedGoogle Scholar
  267. 267.
    Schmidt S, Havekost D, Kaiser K, Kauling J, Henzler HJ (2005) Crystallization for the downstream processing of proteins. Eng Life Sci 5(3):273–276CrossRefGoogle Scholar
  268. 268.
    Hekmat D (2015) Large-scale crystallization of proteins for purification and formulation. Bioprocess Biosyst Eng 38(7):1209–1231CrossRefPubMedGoogle Scholar
  269. 269.
    Jacobsen C, Garside J, Hoare M (1998) Nucleation and growth of microbial lipase crystals from clarified concentrated fermentation broths. Biotechnol Bioeng 57(6):666–675CrossRefPubMedGoogle Scholar
  270. 270.
    Judge RA, Johns MR, White ET (1995) Protein purification by bulk crystallization: the recovery of ovalbumin. Biotechnol Bioeng 48(4):316–323CrossRefPubMedGoogle Scholar
  271. 271.
    Zang Y, Kammerer B, Eisenkolb M, Lohr K, Kiefer H (2011) Towards protein crystallization as a process step in downstream processing of therapeutic antibodies: screening and optimization at microbatch scale. PLoS One 6(9):e25282PubMedCentralCrossRefPubMedGoogle Scholar
  272. 272.
    Baker JC, Roberts BM (1997) Preparation of stable insulin analog crystals. US Patent US5597893 AGoogle Scholar
  273. 273.
    Yang MX, Shenoy B, Disttler M, Patel R, McGrath M, Pechenov S, Margolin AL (2003) Crystalline monoclonal antibodies for subcutaneous delivery. Proc Natl Acad Sci U S A 100(12):6934–6939PubMedCentralCrossRefPubMedGoogle Scholar
  274. 274.
    Basu SK, Govardhan CP, Jung CW, Margolin AL (2004) Protein crystals for the delivery of biopharmaceuticals. Expert Opin Biol Ther 4(3):301–317CrossRefPubMedGoogle Scholar
  275. 275.
    Power G, Hou G, Kamaraju VK, Morris G, Zhao Y, Glennon B (2015) Design and optimization of a multistage continuous cooling mixed suspension, mixed product removal crystallizer. Chem Eng Sci 133:125–139CrossRefGoogle Scholar
  276. 276.
    Su Q, Nagy ZK, Rielly CD (2015) Pharmaceutical crystallisation processes from batch to continuous operation using MSMPR stages: modelling, design, and control. Chem Eng Process 89:41–53CrossRefGoogle Scholar
  277. 277.
    Lawton S, Steele G, Shering P, Zhao L, Laird I, Ni X-W (2009) Continuous crystallization of pharmaceuticals using a continuous oscillatory baffled crystallizer. Org Process Res Dev 13(6):1357–1363CrossRefGoogle Scholar
  278. 278.
    Wong SY, Tatusko AP, Trout BL, Myerson AS (2012) Development of continuous crystallization processes using a single-stage mixed-suspension, mixed-product removal crystallizer with recycle. Cryst Growth Des 12(11):5701–5707CrossRefGoogle Scholar
  279. 279.
    Li J, Trout BL, Myerson AS (2015) Multistage continuous mixed-suspension, mixed-product removal (MSMPR) crystallization with solids recycle. Org Process Res Dev 20(2):510–516CrossRefGoogle Scholar
  280. 280.
    Mascia S, Heider PL, Zhang H, Lakerveld R, Benyahia B, Barton PI, Braatz RD, Cooney CL, Evans J, Jamison TF (2013) End-to-end continuous manufacturing of pharmaceuticals: integrated synthesis, purification, and final dosage formation. Angew Chem Int Ed 52(47):12359–12363CrossRefGoogle Scholar
  281. 281.
    Poechlauer P, Manley J, Broxterman R, Br G, Ridemark M (2012) Continuous processing in the manufacture of active pharmaceutical ingredients and finished dosage forms: an industry perspective. Org Process Res Dev 16(10):1586–1590CrossRefGoogle Scholar
  282. 282.
    Neugebauer P, Khinast JG (2015) Continuous crystallization of proteins in a tubular plug-flow crystallizer. Cryst Growth Des 15(3):1089–1095PubMedCentralCrossRefPubMedGoogle Scholar
  283. 283.
    Burnouf T, Radosevich M (2003) Nanofiltration of plasma-derived biopharmaceutical products. Haemophilia 9(1):24–37CrossRefPubMedGoogle Scholar
  284. 284.
    Lute S, Riordan W, Pease LF, Tsai D-H, Levy R, Haque M, Martin J, Moroe I, Sato T, Morgan M (2008) A consensus rating method for small virus-retentive filters. I Method development. PDA J Pharm Sci Technol 62(5):318–333PubMedGoogle Scholar
  285. 285.
    Klutz S, Lobedann M, Bramsiepe C, Schembecker G (2016) Continuous viral inactivation at low pH value in antibody manufacturing. Chem Eng Process 102:88–101CrossRefGoogle Scholar
  286. 286.
    Brorson K, Krejci S, Lee K, Hamilton E, Stein K, Xu Y (2003) Bracketed generic inactivation of rodent retroviruses by low pH treatment for monoclonal antibodies and recombinant proteins. Biotechnol Bioeng 82(3):321–329CrossRefPubMedGoogle Scholar
  287. 287.
    U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research (1998) Guidance for industry: Q5A viral safety evaluation of biotechnology products derived from cell lines of human or animal origin, RockvilleGoogle Scholar
  288. 288.
    Shukla AA, Hubbard B, Tressel T, Guhan S, Low D (2007) Downstream processing of monoclonal antibodies—application of platform approaches. J Chromatogr B 848(1):28–39CrossRefGoogle Scholar
  289. 289.
    Klutz S, Kurt SK, Lobedann M, Kockmann N (2015) Narrow residence time distribution in tubular reactor concept for Reynolds number range of 10–100. Chem Eng Res Des 95:22–33CrossRefGoogle Scholar
  290. 290.
    Caillet-Fauquet P, Di Giambattista M, Draps M-L, Sandras F, Branckaert T, De Launoit Y, Laub R (2004) Continuous-flow UVC irradiation: a new, effective, protein activity-preserving system for inactivating bacteria and viruses, including erythrovirus B19. J Virol Methods 118(2):131–139CrossRefPubMedGoogle Scholar
  291. 291.
    Lorenz CM, Wolk BM, Quan CP, Alcala EW, Eng M, McDonald DJ, Matthews TC (2009) The effect of low intensity ultraviolet-C light on monoclonal antibodies. Biotechnol Prog 25(2):476–482CrossRefPubMedGoogle Scholar
  292. 292.
    Gunn A, Cameron ID, Pepper DS, MacDonald SL, Li Q (2003) Device for treatment of biological fluids. U.S. Patent 6,586,172Google Scholar
  293. 293.
    Kaiser K, Henzler H-J, Kauling J, Treckmann R, Remington K, Galloway C (2002) Method of inactivating microorganisms in a fluid using ultraviolet radiation. US Patent 7,695,675Google Scholar
  294. 294.
    Bae JE, Jeong EK, Lee JI, Lee J-I, Kim IS, Kum J (2009) Evaluation of viral inactivation efficacy of a continuous flow ultraviolet-C reactor (UVivatec). Kor J Microbiol Biotechnol 4:377–382Google Scholar
  295. 295.
    Li Q, MacDonald S, Bienek C, Foster PR, MacLeod AJ (2005) Design of a UV-C irradiation process for the inactivation of viruses in protein solutions. Biologicals 33(2):101–110CrossRefPubMedGoogle Scholar
  296. 296.
    Wang J, Mauser A, Chao SF, Remington K, Treckmann R, Kaiser K, Pifat D, Hotta J (2004) Virus inactivation and protein recovery in a novel ultraviolet-C reactor. Vox Sang 86(4):230–238CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Bioprocess Development, SanofiFraminghamUSA

Personalised recommendations