Biotechnology of Anoxygenic Phototrophic Bacteria

  • Niels-Ulrik FrigaardEmail author
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 156)


Anoxygenic phototrophic bacteria are a diverse collection of organisms that are defined by their ability to grow using energy from light without evolving oxygen. The dominant groups are purple sulfur bacteria, purple nonsulfur bacteria, green sulfur bacteria, and green and red filamentous anoxygenic phototrophic bacteria. They represent several bacterial phyla but they all have bacteriochlorophylls and carotenoids and photochemical reaction centers which generate ATP and cellular reductants used for CO2 fixation. They typically have an anaerobic lifestyle in the light, although some grow aerobically in the dark. Some of them oxidize inorganic sulfur compounds for light-dependent CO2 fixation; this ability can be exploited for photobiological removal of hydrogen sulfide from wastewater and biogas. The anoxygenic phototrophic bacteria also perform bioremediation of recalcitrant dyes, pesticides, and heavy metals under anaerobic conditions. Finally, these organisms may be useful for overexpression of membrane proteins and photobiological production of H2 and other valuable compounds.


Biogas Bioremediation Carotenoids Green sulfur bacteria Hydrogen sulfide Membrane proteins Photosynthetic bacteria Purple bacteria 





Standard reduction potential at pH 7 and 25 °C


Extracellular polymeric substances


Filamentous anoxygenic phototrophs


Green sulfur bacteria




Purple nonsulfur bacteria


Purple sulfur bacteria


  1. 1.
    Blankenship RE (2008) Molecular mechanisms of photosynthesis. Blackwell Science, Oxford, UKGoogle Scholar
  2. 2.
    Hohmann-Marriott MF, Blankenship RE (2011) Evolution of photosynthesis. Annu Rev Plant Biol 62:515–548CrossRefGoogle Scholar
  3. 3.
    Bryant DA, Frigaard N-U (2006) Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 14(11):488–496CrossRefGoogle Scholar
  4. 4.
    Blankenship RE, Madigan MT, Bauer CE (1995) Anoxygenic photosynthetic bacteria. Springer, The NetherlandsCrossRefGoogle Scholar
  5. 5.
    Idi A et al (2015) Photosynthetic bacteria: an eco-friendly and cheap tool for bioremediation. Rev Environ Sci Biotechnol 14(2):271–285CrossRefGoogle Scholar
  6. 6.
    Hunter CN et al (2009) The purple phototrophic bacteria, Advances in photosynthesis and respiration. Springer, LondonCrossRefGoogle Scholar
  7. 7.
    Zeng Y et al (2014) Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc Natl Acad Sci U S A 111(21):7795–7800CrossRefGoogle Scholar
  8. 8.
    Cohen Y, Gurevitz M (2006) The cyanobacteria—ecology, physiology and molecular genetics. Prokaryotes 4:1074–1098Google Scholar
  9. 9.
    Frigaard N-U, Dahl C (2009) Sulfur metabolism in phototrophic sulfur bacteria. Adv Microb Physiol 54:103–200CrossRefGoogle Scholar
  10. 10.
    Hurse TJ, Kappler U, Keller J (2008) Using anoxygenic photosynthetic bacteria for the removal of sulfide from wastewater. In: Sulfur metabolism in phototrophic organisms. Springer, Dordrecht, pp 437–460CrossRefGoogle Scholar
  11. 11.
    Holkenbrink C et al (2011) Sulfur globule oxidation in green sulfur bacteria is dependent on the dissimilatory sulfite reductase system. Microbiology 157(Pt 4):1229–1239CrossRefGoogle Scholar
  12. 12.
    Henshaw PF, Zhu W (2001) Biological conversion of hydrogen sulphide to elemental sulphur in a fixed-film continuous flow photo-reactor. Water Res 35(15):3605–3610CrossRefGoogle Scholar
  13. 13.
    Garcia GP et al (2015) Biological sulphide removal from anaerobically treated domestic sewage: reactor performance and microbial community dynamics. Environ Technol 36(17):2177–2189CrossRefGoogle Scholar
  14. 14.
    Syed M et al (2006) Removal of hydrogen sulfide from gas streams using biological processes – a review. Can Biosyst Eng 48:2.1–2.14Google Scholar
  15. 15.
    An JY, Kim BW (2000) Biological desulfurization in an optical-fiber photobioreactor using an automatic sunlight collection system. J Biotechnol 80(1):35–44CrossRefGoogle Scholar
  16. 16.
    Kim YJ, Kim BW, Chang HN (1996) Desulfurization in a plate-type gas-lift photobioreactor using light emitting diodes. Korean J Chem Eng 13(6):606–611CrossRefGoogle Scholar
  17. 17.
    Basu R, Clausen EC, Gaddy JL (1996) Biological conversion of hydrogen sulfide into elemental sulfur. Environ Prog 15(4):234–238CrossRefGoogle Scholar
  18. 18.
    Pandey A, Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeter Biodegr 59(2):73–84CrossRefGoogle Scholar
  19. 19.
    Bin Y et al (2004) Expression and characteristics of the gene encoding azoreductase from Rhodobacter sphaeroides AS1.1737. FEMS Microbiol Lett 236(1):129–136CrossRefGoogle Scholar
  20. 20.
    Liu G-f et al (2006) Bacterial decolorization of azo dyes by Rhodopseudomonas palustris. World J Microbiol Biotechnol 22(10):1069–1074CrossRefGoogle Scholar
  21. 21.
    Wang X et al (2008) Biodecolorization and partial mineralization of Reactive Black 5 by a strain of Rhodopseudomonas palustris. J Environ Sci (China) 20(10):1218–1225CrossRefGoogle Scholar
  22. 22.
    Kim TTH et al (2003) Decolorization of azo dyes by purple non-sulfur bacteria. In: Annual Report of FY 2002, The Core University Program between Japan Society for the Promotion of Science (JSPS) and National Centre for Natural Science and Technology (NCST). pp 112–118Google Scholar
  23. 23.
    Wang X et al (2015) Formation characteristics of an anoxygenic photosynthetic bacterial biofilm in a photorotating biological contactor for azo dye wastewater treatment. J Chem Technol Biotechnol 90(1):176–184CrossRefGoogle Scholar
  24. 24.
    Mutharasaiah K, Govindareddy V, Karigar C (2010) Photobiodegradation of halogenated aromatic pollutants. Adv Biosci Biotechnol 01(03):238–240CrossRefGoogle Scholar
  25. 25.
    Dixit R et al (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212CrossRefGoogle Scholar
  26. 26.
    Seki H, Suzuki A, Mitsueda S-I (1998) Biosorption of heavy metal ions on Rhodobacter sphaeroides and Alcaligenes eutrophus H16. J Colloid Interface Sci 197(2):185–190CrossRefGoogle Scholar
  27. 27.
    Watanabe M et al (2003) Biosorption of cadmium ions using a photosynthetic bacterium, Rhodobacter sphaeroides S and a marine photosynthetic bacterium, Rhodovulum sp. and their biosorption kinetics. J Biosci Bioeng 95(4):374–378CrossRefGoogle Scholar
  28. 28.
    Buccolieri A et al (2006) Testing the photosynthetic bacterium Rhodobacter sphaeroides as heavy metal removal tool. Ann Chim 96(3–4):195–203CrossRefGoogle Scholar
  29. 29.
    Sasaki K et al (2013) Simultaneous removal of cesium and strontium using a photosynthetic bacterium, Rhodobacter sphaeroides SSI immobilized on porous ceramic made from waste glass. Adv Biosci Biotechnol 04(01):6–13CrossRefGoogle Scholar
  30. 30.
    Panwichian S et al (2011) Removal of heavy metals by exopolymeric substances produced by resistant purple nonsulfur bacteria isolated from contaminated shrimp ponds. Electron J Biotechnol 14(4).
  31. 31.
    Magnin JP, Gondrexon N, Willison JC (2014) Zinc biosorption by the purple non-sulfur bacterium Rhodobacter capsulatus. Can J Microbiol 60(12):829–837CrossRefGoogle Scholar
  32. 32.
    Sakurai H et al (2013) Photobiological hydrogen production: bioenergetics and challenges for its practical application. J Photochem Photobiol C 17:1–25CrossRefGoogle Scholar
  33. 33.
    Lazaro CZ, Varesche MBA, Silva EL (2015) Sequential fermentative and phototrophic system for hydrogen production: an approach for Brazilian alcohol distillery wastewater. Int J Hydrogen Energy 40(31):9642–9655Google Scholar
  34. 34.
    Zürrer H, Bachofen R (1979) Hydrogen production by the photosynthetic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 37(5):789–793Google Scholar
  35. 35.
    Najafpour GD, Younesi H (2007) Bioconversion of synthesis gas to hydrogen using a light-dependent photosynthetic bacterium, Rhodospirillum rubrum. World J Microbiol Biotechnol 23(2):275–284CrossRefGoogle Scholar
  36. 36.
    Warthmann R, Cypionka H, Pfennig N (1992) Photoproduction of H2 from acetate by syntrophic cocultures of green sulfur bacteria and sulfur-reducing bacteria. Arch Microbiol 157(4):343–348CrossRefGoogle Scholar
  37. 37.
    Kirti K et al (2014) Colorful world of microbes: carotenoids and their applications. Adv Biol 2014:1–13CrossRefGoogle Scholar
  38. 38.
    Sun Z et al (2014) Microalgae as the production platform for carotenoids. Recent advances in microalgal biotechnology. OMICS Group eBooks, Foster City, CA, USA, pp 1–17Google Scholar
  39. 39.
    Takaichi S (1999) Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria. In: The photochemistry of carotenoids. Kluwer, Dordrecht, pp 39–69Google Scholar
  40. 40.
    Fraser NJ, Hashimoto H, Cogdell RJ (2001) Carotenoids and bacterial photosynthesis: the story so far. Photosynth Res 70(3):249–256CrossRefGoogle Scholar
  41. 41.
    Wang GS et al (2012) High-level production of the industrial product lycopene by the photosynthetic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 78(20):7205–7215CrossRefGoogle Scholar
  42. 42.
    Chen YY et al (2013) Chromosomal evolution of Escherichia coli for the efficient production of lycopene. BMC Biotechnol 13:6CrossRefGoogle Scholar
  43. 43.
    Frigaard NU et al (2004) Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum. J Bacteriol 186(16):5210–5220CrossRefGoogle Scholar
  44. 44.
    Englund E et al (2015) Metabolic engineering of Synechocystis sp. PCC 6803 for production of the plant diterpenoid manoyl oxide. ACS Synth Biol 4(12):1270–1278Google Scholar
  45. 45.
    Laible PD, Mielke DL, Hanson DK (2009) Foreign gene expression in photosynthetic bacteria. In: The purple phototrophic bacteria. Springer, Dordrecht, pp 839–860CrossRefGoogle Scholar
  46. 46.
    Erbakan M et al (2015) Advancing Rhodobacter sphaeroides as a platform for expression of functional membrane proteins. Protein Expr Purif 115:109–117Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of BiologyUniversity of CopenhagenHelsingørDenmark

Personalised recommendations