Characterization of the Binding Properties of Molecularly Imprinted Polymers



The defining characteristic of the binding sites of any particular molecularly imprinted material is heterogeneity: that is, they are not all identical. Nonetheless, it is useful to study their fundamental binding properties, and to obtain average properties. In particular, it has been instructive to compare the binding properties of imprinted and non-imprinted materials. This chapter begins by considering the origins of this site heterogeneity. Next, the properties of interest of imprinted binding sites are described in brief: affinity, selectivity, and kinetics. The binding/adsorption isotherm, the graph of concentration of analyte bound to a MIP versus concentration of free analyte at equilibrium, over a range of total concentrations, is described in some detail. Following this, the techniques for studying the imprinted sites are described (batch-binding assays, radioligand binding assays, zonal chromatography, frontal chromatography, calorimetry, and others). Thereafter, the parameters that influence affinity, selectivity and kinetics are discussed (solvent, modifiers of organic solvents, pH of aqueous solvents, temperature). Finally, mathematical attempts to fit the adsorption isotherms for imprinted materials, so as to obtain information about the range of binding affinities characterizing the imprinted sites, are summarized.

Graphical Abstract


Batch binding Binding isotherms Binding site heterogeneity Chromatographic analysis Selectivity 


  1. 1.
    Andersson HS, Karlsson JG, Piletsky SA, Koch-Schmidt AC, Mosbach K, Nicholls IA (1999) Study of the nature of recognition in molecularly imprinted polymers, II 1—influence of monomer-template ratio and sample load on retention and selectivity. J Chromatogr A 848(1–2):39–49. doi:10.1016/s0021-9673(99)00483-5 Google Scholar
  2. 2.
    Katz A, Davis ME (1999) Investigations into the mechanisms of molecular recognition with imprinted polymers. Macromolecules 32(12):4113–4121. doi:10.1021/ma981445z Google Scholar
  3. 3.
    Baggiani C, Giraudi G, Giovannoli C, Tozzi C, Anfossi L (2004) Adsorption isotherms of a molecular imprinted polymer prepared in the presence of a polymerisable template—indirect evidence of the formation of template clusters in the binding site. Anal Chim Acta 504(1):43–52. doi:10.1016/s0003-2670(03)00671-8 Google Scholar
  4. 4.
    Lavignac N, Brain KR, Allender CJ (2006) Concentration dependent atrazine-atrazine complex formation promotes selectivity in atrazine imprinted polymers. Biosens Bioelectron 22(1):138–144. doi:10.1016/j.bios.2006.03.017 Google Scholar
  5. 5.
    Kim H, Spivak DA (2003) New insight into modeling non-covalently imprinted polymers. J Am Chem Soc 125(37):11269–11275. doi:10.1021/ja0361502 Google Scholar
  6. 6.
    Kobayashi T, Fukaya T, Abe M, Fujii N (2002) Phase inversion molecular imprinting by using template copolymers for high substrate recognition. Langmuir 18(7):2866–2872. doi:10.1021/la0106586 Google Scholar
  7. 7.
    Yoshikawa M (2001) Molecularly imprinted polymeric membranes. Bioseparation 10(6):277–286. doi:10.1023/a:1021537602663 Google Scholar
  8. 8.
    Stahl M, Jeppssonwistrand U, Mansson MO, Mosbach K (1991) Induced stereo selectivity and substrate selectivity of bio-imprinted alpha-chymotrypsin in anhydrous organic media. J Am Chem Soc 113(24):9366–9368Google Scholar
  9. 9.
    Ansell RJ, Kuah KL (2005) Imprinted polymers for chiral resolution of (±)-ephedrine: understanding the pre-polymerisation equilibrium and the action of different mobile phase modifiers. Analyst 130(2):179–187. doi:10.1039/b408751h Google Scholar
  10. 10.
    Benito-Pena E, Urraca JL, Sellergren B, Cruz Moreno-Bondi M (2008) Solid-phase extraction of fluoroquinolones from aqueous samples using a water-compatible stochiometrically imprinted polymer. J Chromatogr A 1208(1–2):62–70. doi:10.1016/j.chroma.2008.08.109 Google Scholar
  11. 11.
    Hall AJ, Manesiotis P, Emgenbroich M, Quaglia M, De Lorenzi E, Sellergren B (2005) Urea host monomers for stoichiometric molecular imprinting of oxyanions. J Org Chem 70(5):1732–1736. doi:10.1021/jo048470p Google Scholar
  12. 12.
    Lubke C, Lubke M, Whitcombe MJ, Vulfson EN (2000) Imprinted polymers prepared with stoichiometric template-monomer complexes: efficient binding of ampicillin from aqueous solutions. Macromolecules 33(14):5098–5105. doi:10.1021/ma000467u Google Scholar
  13. 13.
    Manesiotis P, Osmani Q, McLoughlin P (2012) An enantio-selective chromatographic stationary phase for S-ibuprofen prepared by stoichiometric molecular imprinting. J Mater Chem 22(22):11201–11207. doi:10.1039/c2jm16659c Google Scholar
  14. 14.
    Urraca JL, Hall AJ, Moreno-Bondi MC, Sellergren B (2006) A stoichiometric molecularly imprinted polymer for the class-selective recognition of antibiotics in aqueous media. Angew Chem Int Ed 45(31):5158–5161. doi:10.1002/anie.200601636 Google Scholar
  15. 15.
    Wulff G, Knorr K (2001) Stoichiometric noncovalent interaction in molecular imprinting. Bioseparation 10(6):257–276. doi:10.1023/a:1021585518592 Google Scholar
  16. 16.
    Pap T, Horvai G (2004) Binding assays with molecularly imprinted polymers—why do they work? J Chromatogr B Anal Technol Biomed and Life Sci 804(1):167–172Google Scholar
  17. 17.
    Baggiani C, Giovannoli C, Anfossi L, Passini C, Baravalle P, Giraudi G (2012) A connection between the binding properties of imprinted and nonimprinted polymers: a change of perspective in molecular imprinting. J Am Chem Soc 134(3):1513–1518. doi:10.1021/ja205632t Google Scholar
  18. 18.
    Toth B, Pap T, Horvath V, Horvai G (2006) Nonlinear adsorption isotherm as a tool for understanding and characterizing molecularly imprinted polymers. J Chromatogr A 1119(1–2):29–33. doi:10.1016/j.chroma.2005.10.048 Google Scholar
  19. 19.
    Toth B, Pap T, Horvath V, Horvai G (2007) Which molecularly imprinted polymer is better? Anal Chim Acta 591(1):17–21. doi:10.1016/j.aca.2007.01.016 Google Scholar
  20. 20.
    Castell OK, Barrow DA, Kamarudin AR, Allender CJ (2011) Current practices for describing the performance of molecularly imprinted polymers can be misleading and may be hampering the development of the field. J Mol Recognit 24(6):1115–1122. doi:10.1002/jmr.1161 Google Scholar
  21. 21.
    Castell OK, Allender CJ, Barrow DA (2006) Novel biphasic separations utilising highly selective molecularly imprinted polymers as biorecognition solvent extraction agents. Biosens Bioelectron 22(4):526–533. doi:10.1016/j.bios.2006.07.017 Google Scholar
  22. 22.
    Garcia-Calzon JA, Diaz-Garcia ME (2007) Characterization of binding sites in molecularly imprinted polymers. Sens Actuators B Chem 123(2):1180–1194. doi:10.1016/j.snb.2006.10.068 Google Scholar
  23. 23.
    Ansell RJ, Gamlien A, Berglund J, Mosbach K, Haupt K. Binding data for a caffeine-imprinted polymer obtained radioligand binding assay (Unpublished work)Google Scholar
  24. 24.
    Norby JG, Ottolenghi P, Jensen J (1980) Scatchard plot—common misinterpretation of binding experiments. Anal Biochem 102(2):318–320. doi:10.1016/0003-2697(80)90160-8 Google Scholar
  25. 25.
    Vlatakis G, Andersson L, Müller R, Mosbach K (1993) Drug assay using antibody mimics made by molecular imprinting. Nature 361:645–647Google Scholar
  26. 26.
    Andersson LI, Muller R, Vlatakis G, Mosbach K (1995) Mimics of the binding sites of opioid receptors obtained by molecular imprinting of enkephalin and morphine. Proc Natl Acad Sci USA 92(11):4788–4792. doi:10.1073/pnas.92.11.4788 Google Scholar
  27. 27.
    Lehmann M, Dettling M, Brunner H, Tovar GEM (2004) Affinity parameters of amino acid derivative binding to molecularly imprinted nanospheres consisting of poly (ethylene glycol dimethacrylate)-co-(methacrylic acid). J Chromatogr B Anal Technol Biomed Life Sci 808(1):43–50. doi:10.1016/j.jchromb.2004.03.068 Google Scholar
  28. 28.
    Li H, Nie LH, Yao SZ (2004) Adsorption isotherms and sites distribution of caffeic acid—imprinted polymer monolith from frontal analysis. Chromatographia 60(7–8):425–431. doi:10.1365/s10337-004-0403-9 Google Scholar
  29. 29.
    Sajonz P, Kele M, Zhong G, Sellergren B, Guiochon G (1998) Study of the thermodynamics and mass transfer kinetics of two enantiomers on a polymeric imprinted stationary phase. J Chromatogr A 810(1–2):1–17Google Scholar
  30. 30.
    Umpleby RJ, Baxter SC, Rampey AM, Rushton GT, Chen YZ, Shimizu KD (2004) Characterization of the heterogeneous binding site affinity distributions in molecularly imprinted polymers. J Chromatogr B Anal Technol Biomed Life Sci 804(1):141–149. doi:10.1016/j.jchromb.2004.01.064 Google Scholar
  31. 31.
    Umpleby RJ, Baxter SC, Bode M, Berch JK, Shah RN, Shimizu KD (2001) Application of the Freundlich adsorption isotherm in the characterization of molecularly imprinted polymers. Anal Chim Acta 435(1):35–42. doi:10.1016/s0003-2670(00)01211-3 Google Scholar
  32. 32.
    Rampey AM, Umpleby RJ, Rushton GT, Iseman JC, Shah RN, Shimizu KD (2004) Characterization of the imprint effect and the influence of imprinting conditions on affinity, capacity, and heterogeneity in molecularly imprinted polymers using the Freundlich isotherm-affinity distribution analysis. Anal Chem 76(4):1123–1133. doi:10.1021/ac0345345 Google Scholar
  33. 33.
    Rushton GT, Karns CL, Shimizu KD (2005) A critical examination of the use of the Freundlich isotherm in characterizing molecularly imprinted polymers (MLPs). Anal Chim Acta 528(1):107–113. doi:10.1016/j.aca.2004.07.048 Google Scholar
  34. 34.
    Umpleby RJ, Baxter SC, Chen YZ, Shah RN, Shimizu KD (2001) Characterization of molecularly imprinted polymers with the Langmuir-Freundlich isotherm. Anal Chem 73(19):4584–4591. doi:10.1021/ac0105686 Google Scholar
  35. 35.
    Tamayo FG, Casillas JL, Martin-Esteban A (2003) Highly selective fenuron-imprinted polymer with a homogeneous binding site distribution prepared by precipitation polymerization and its application to the clean-up of fenuron in plant samples. Anal Chim Acta 482(2):165–173. doi:10.1016/s0003-2670(03)00213-7 Google Scholar
  36. 36.
    Cacho C, Turiel E, Martin-Esteban A, Perez-Conde C, Camara C (2004) Characterisation and quality assessment of binding sites on a propazine-imprinted polymer prepared by precipitation polymerisation. J Chromatogr B Anal Technol Biomed Life Sci 802(2):347–353. doi:10.1016/j.jchromb.2003.12.018 Google Scholar
  37. 37.
    Turiel E, Perez-Conde C, Martin-Esteban A (2003) Assessment of the cross-reactivity and binding sites characterisation of a propazine-imprinted polymer using the Langmuir-Freundlich isotherm. Analyst 128(2):137–141. doi:10.1039/b210712k Google Scholar
  38. 38.
    Corton E, Garcia-Calzon JA, Diaz-Garcia ME (2007) Kinetics and binding properties of cloramphenicol imprinted polymers. J Non Cryst Solids 353(8–10):974–980. doi:10.1016/j.jnoncrysol.2006.12.066 Google Scholar
  39. 39.
    Wulff G, Grobeeinsler R, Vesper W, Sarhan A (1977) Enzyme-analogue built polymers, 5. Specificity distribution of chiral cavities prepared in synthetic polymers. Makromol Chem Macromol Chem Phys 178(10):2817–2825Google Scholar
  40. 40.
    Shea KJ, Spivak DA, Sellergren B (1993) Polymer complements to nucleotide bases—selective binding of adenine-derivatives to imprinted polymers. J Am Chem Soc 115(8):3368–3369. doi:10.1021/ja00061a061 Google Scholar
  41. 41.
    Guo TY, Xia YQ, Hao GJ, Song MD, Zhang BH (2004) Adsorptive separation of hemoglobin by molecularly imprinted chitosan beads. Biomaterials 25(27):5905–5912. doi:10.1016/j.biomaterials.2004.01.032 Google Scholar
  42. 42.
    Ju JY, Shin CS, Whitcombe MJ, Vulfson EN (1999) Binding properties of an aminostyrene-based polymer imprinted with glutamylated monascus pigments. Biotechnol Tech 13(10):665–669. doi:10.1023/a:1008955528251 Google Scholar
  43. 43.
    Mathew J, Buchardt O (1995) Molecular imprinting approach for the recognition of adenine in aqueous medium and hydrolysis of adenosine 5′-triphosphate. Bioconjugate Chemistry 6(5):524–528. doi:10.1021/bc00035a004 Google Scholar
  44. 44.
    Milojkovic SS, Kostoski D, Comor JJ, Nedeljkovic JM (1997) Radiation induced synthesis of molecularly imprinted polymers. Polymer 38(11):2853–2855. doi:10.1016/s0032-3861(97)85624-8 Google Scholar
  45. 45.
    Puzio K, Delepee R, Vidal R, Agrofoglio LA (2013) Combination of computational methods, adsorption isotherms and selectivity tests for the conception of a mixed non-covalent-semi-covalent molecularly imprinted polymer of vanillin. Anal Chim Acta 790:47–55. doi:10.1016/j.aca.2013.06.036 Google Scholar
  46. 46.
    Song D, Zhang Y, Geer MF, Shimizu KD (2014) Characterization of molecularly imprinted polymers using a new polar solvent titration method. J Mol Recognit 27(7):448–457. doi:10.1002/jmr.2365 Google Scholar
  47. 47.
    Malosse L, Palmas P, Buvat P, Adès D, Siove A (2008) Novel stoichiometric, noncovalent pinacolyl methylphosphonate imprinted polymers: a rational design by NMR spectroscopy. Macromolecules 41(21):7834–7842. doi:10.1021/ma801171g Google Scholar
  48. 48.
    Yilmaz E, Mosbach K, Haupt K (1999) Influence of functional and cross-linking monomers and the amount of template on the performance of molecularly imprinted polymers in binding assays. Anal Commun 36(5):167–170. doi:10.1039/a901339c Google Scholar
  49. 49.
    Wei ST, Molinelli A, Mizaikoff B (2006) Molecularly imprinted micro and nanospheres for the selective recognition of 17 beta-estradiol. Biosens Bioelectron 21(10):1943–1951. doi:10.1016/j.bios.2005.09.017 Google Scholar
  50. 50.
    Sellergren B (2001) Imprinted chiral stationary phases in high-performance liquid chromatography. J Chromatogr A 906(1–2):227–252. doi:10.1016/s0021-9673(00)00929-8 Google Scholar
  51. 51.
    Sellergren B, Lepisto M, Mosbach K (1988) Highly enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing noncovalent interactions—NMR and chromatographic studies on the nature of recognition. J Am Chem Soc 110(17):5853–5860. doi:10.1021/ja00225a041 Google Scholar
  52. 52.
    Lei JD, Tan TW (2002) Enantioselective separation of naproxen and investigation of affinity chromatography model using molecular imprinting. Biochem Eng J 11(2–3):175–179. doi:10.1016/s1369-703x(02)00022-0 Google Scholar
  53. 53.
    Sun RF, Yu HM, Luo H, Shen ZY (2004) Construction and application of a stoichiometric displacement model for retention in chiral recognition of molecular imprinting. J Chromatogr A 1055(1–2):1–9. doi:10.1016/j.chroma.2004.08.161 Google Scholar
  54. 54.
    Kuah KL, Ansell RJ. Zonal chromatography on a (-)-ephedrine imprinted chiral stationary phase (Unpublished work)Google Scholar
  55. 55.
    Sellergren B, Shea K (1995) Origin of peak asymmetry and the effect of temperature on solute retention in enantiomer separations on imprinted chiral stationary phases. J Chromatogr A 690:29–39Google Scholar
  56. 56.
    Kim H, Guiochon G (2005) Thermodynamic functions and intraparticle mass transfer kinetics of structural analogues of a template on molecularly imprinted polymers in liquid chromatography. J Chromatogr A 1097(1–2):84–97. doi:10.1016/j.chroma.2005.08.020 Google Scholar
  57. 57.
    Kim H, Kaczmarski K, Guiochon G (2005) Mass transfer kinetics on the heterogeneous binding sites of molecularly imprinted polymers. Chem Eng Sci 60(20):5425–5444. doi:10.1016/j.ces.2005.04.057 Google Scholar
  58. 58.
    Kim H, Kaczmarski K, Guiochon G (2006) Isotherm parameters and intraparticle mass transfer kinetics on molecularly imprinted polymers in acetonitrile/buffer mobile phases. Chem Eng Sci 61(16):5249–5267. doi:10.1016/j.ces.2006.03.043 Google Scholar
  59. 59.
    Kim H, Kaczmarski K, Guiochon G (2006) Intraparticle mass transfer kinetics on molecularly imprinted polymers of structural analogues of a template. Chem Eng Sci 61(4):1122–1137. doi:10.1016/j.ces.2005.08.012 Google Scholar
  60. 60.
    Kim HJ, Kaczmarski K, Guiochon G (2006) Thermodynamic analysis of the heterogenous binding sites of molecularly imprinted polymers. J Chromatogr A 1101(1–2):136–152. doi:10.1016/j.chroma.2005.09.092 Google Scholar
  61. 61.
    Toth B, Laszlo K, Horvai G (2005) Chromatographic behavior of silica-polymer composite molecularly imprinted materials. J Chromatogr A 1100(1):60–67. doi:10.1016/j.chroma.2005.09.015 Google Scholar
  62. 62.
    Seebach A, Seidel-Morgenstern A (2007) Enantioseparation on molecularly imprinted monoliths—preparation and adsorption isotherms. Anal Chim Acta 591(1):57–62. doi:10.1016/j.aca.2007.02.059 Google Scholar
  63. 63.
    Baggiani C, Baravalle P, Anfossi L, Tozzi C (2005) Comparison of pyrimethanil-imprinted beads and bulk polymer as stationary phase by non-linear chromatography. Anal Chim Acta 542(1):125–134. doi:10.1016/j.aca.2004.10.088 Google Scholar
  64. 64.
    Lee W-C, Cheng C-H, Pan H-H, Chung T-H, Hwang C-C (2008) Chromatographic characterization of molecularly imprinted polymers. Anal Bioanal Chem 390(4):1101–1109. doi:10.1007/s00216-007-1765-2 Google Scholar
  65. 65.
    Chaiken IM (1986) Analytical affinity chromatography in studies of molecular recognition in biology—a review. J Chromatogr 376:11–32. doi:10.1016/s0378-4347(00)80821-x Google Scholar
  66. 66.
    Kasai K, Oda Y, Nishikata M, Ishii S (1986) Frontal affinity chromatography—theory for its application to studies on specific interactions of biomolecules. J Chromatogr 376:33–47. doi:10.1016/s0378-4347(00)80822-1 Google Scholar
  67. 67.
    Calleri E, Temporini C, Massolini G (2011) Frontal affinity chromatography in characterizing immobilized receptors. J Pharm Biomed Anal 54(5):911–925. doi:10.1016/j.jpba.2010.11.040 Google Scholar
  68. 68.
    Ramstrom O, Nicholls IA, Mosbach K (1994) Synthetic peptide receptor mimics—highly stereoselective recognition in noncovalent molecularly imprinted polymers. Tetrahedron-Asymmetry 5(4):649–656. doi:10.1016/0957-4166(94)80027-8 Google Scholar
  69. 69.
    Kempe M, Mosbach K (1991) Binding-studies on substrate- and enantio-selective molecularly imprinted polymers. Anal Lett 24(7):1137–1145Google Scholar
  70. 70.
    Andersson HS, KochSchmidt AC, Ohlson S, Mosbach K (1996) Study of the nature of recognition in molecularly imprinted polymers. J Mol Recognit 9(5–6):675–682. doi:10.1002/(sici)1099-1352(199634/12)9:5/6<675:AID-JMR320>3.0.CO;2-c Google Scholar
  71. 71.
    Baggiani C, Giovannoli C, Anfossi L, Tozzi C (2001) Molecularly imprinted solid-phase extraction sorbent for the clean-up of chlorinated phenoxyacids from aqueous samples. J Chromatogr A 938(1–2):35–44. doi:10.1016/s0021-9673(01)01126-8 Google Scholar
  72. 72.
    Baggiani C, Trotta F, Giraudi G, Moraglio G, Vanni A (1997) Chromatographic characterization of a molecularly imprinted polymer binding theophylline in aqueous buffers. J Chromatogr A 786(1):23–29. doi:10.1016/s0021-9673(97)00537-2 Google Scholar
  73. 73.
    Meng ZH, Zhou LM, Wang JF, Wang QH, Zhu DQ (1999) Molecule imprinting chiral stationary phase. Biomed Chromatogr 13(6):389–393. doi:10.1002/(sici)1099-0801(199910)13:6<389:AID-BMC897>3.3.CO;2-h Google Scholar
  74. 74.
    Liu HY, Yang GL, Liu SB, Wang MM, Chen Y (2005) Molecular recognition properties and adsorption isotherms of diniconaziole-imprinted polymers. J Liq Chromatogr Relat Technol 28(15):2315–2323. doi:10.1080/10826070500187509 Google Scholar
  75. 75.
    Chen YB, Kele M, Sajonz P, Sellergren B, Guiochon G (1999) Influence of thermal annealing on the thermodynamic and mass transfer kinetic properties of D- and L-phenylalanine anilide on imprinted polymeric stationary phases. Anal Chem 71(5):928–938. doi:10.1021/ac981154o Google Scholar
  76. 76.
    Szabelski P, Kaczmarski K, Cavazzini A, Chen YB, Sellergren B, Guiochon G (2002) Energetic heterogeneity of the surface of a molecularly imprinted polymer studied by high-performance liquid chromatography. J Chromatogr A 964(1–2):99–111Google Scholar
  77. 77.
    Chen YB, Kele M, Quinones I, Sellergren B, Guiochon G (2001) Influence of the pH on the behavior of an imprinted polymeric stationary phase—supporting evidence for a binding site model. J Chromatogr A 927(1–2):1–17Google Scholar
  78. 78.
    Kim HJ, Guiochon G (2005) Thermodynamic studies of the solvent effects in chromatography on molecularly imprinted polymers, 3. Nature of the organic mobile phase. Anal Chem 77(8):2496–2504. doi:10.1021/ac040171c Google Scholar
  79. 79.
    Kim H, Guiochon G (2005) Thermodynamic studies on the solvent effects in chromatography on molecularly imprinted polymers, 1. Nature of the organic modifier. Anal Chem 77(6):1708–1717. doi:10.1021/ac040155f Google Scholar
  80. 80.
    Kim H, Guiochon G (2005) Thermodynamic studies on solvent effects in molecularly imprinted polymers, 2. Concentration of the organic modifier. Anal Chem 77(6):1718–1726. doi:10.1021/ac040164o Google Scholar
  81. 81.
    Kim HJ, Guiochon G (2005) Comparison of the thermodynamic properties of particulate and monolithic columns of molecularly imprinted copolymers. Anal Chem 77(1):93–102. doi:10.1021/ac0401218 Google Scholar
  82. 82.
    Kim H, Guiochon G (2005) Adsorption on molecularly imprinted polymers of structural analogues of a template. Single-component adsorption isotherm data. Anal Chem 77(19):6415–6425. doi:10.1021/ac050914+ Google Scholar
  83. 83.
    Miyabe K, Guiochon G (2003) Measurement of the parameters of the mass transfer kinetics in high performance liquid chromatography. J Sep Sci 26(3–4):155–173. doi:10.1002/jssc.200390024 Google Scholar
  84. 84.
    Chen WY, Chen CS, Lin FY (2001) Molecular recognition in imprinted polymers: thermodynamic investigation of analyte binding using microcalorimetry. J Chromatogr A 923(1–2):1–6. doi:10.1016/s0021-9673(01)00971-2 Google Scholar
  85. 85.
    Dvorakova G, Haschick R, Chiad K, Klapper M, Muellen K, Biffis A (2010) Molecularly imprinted nanospheres by nonaqueous emulsion polymerization. Macromol Rapid Commun 31(23):2035–2040. doi:10.1002/marc.201000406 Google Scholar
  86. 86.
    Hsu C-Y, Lin H-Y, Thomas JL, Wu B-T, Chou T-C (2006) Incorporation of styrene enhances recognition of ribonuclease A by molecularly imprinted polymers. Biosens Bioelectron 22(3):355–363. doi:10.1016/j.bios.2006.05.008 Google Scholar
  87. 87.
    Kimhi O, Bianco-Peled H (2007) Study of the interactions between protein-imprinted hydrogels and their templates. Langmuir 23(11):6329–6335. doi:10.1021/la700248s Google Scholar
  88. 88.
    Kirchner R, Seidel J, Wolf G, Wulff G (2002) Calorimetric investigation of chiral recognition processes in a molecularly imprinted polymer. J Incl Phenom Macrocycl Chem 43(3–4):279–283. doi:10.1023/a:1021243826862 Google Scholar
  89. 89.
    Manesiotis P, Hall AJ, Courtois J, Irgum K, Sellergren B (2005) An artificial riboflavin receptor prepared by a template analogue imprinting strategy. Angew Chem Int Ed 44(25):3902–3906. doi:10.1002/anie.200500342 Google Scholar
  90. 90.
    Weber A, Dettling M, Brunner H, Tovar GEM (2002) Isothermal titration calorimetry of molecularly imprinted polymer nanospheres. Macromol Rapid Commun 23(14):824–828. doi:10.1002/1521-3927(20021001)23:14<824:aid-marc824>;2-p Google Scholar
  91. 91.
    Rick J, Chou TC (2005) Imprinting unique motifs formed from protein-protein associations. Anal Chim Acta 542(1):26–31. doi:10.1016/j.aca.2004.12.051 Google Scholar
  92. 92.
    Rick J, Chou TC (2005) Enthalpy changes associated with protein binding to thin films. Biosens Bioelectron 20(9):1878–1883. doi:10.1016/j.bios.2004.11.015 Google Scholar
  93. 93.
    Tamayo FG, Casillas JL, Martin-Esteban A (2005) Evaluation of new selective molecularly imprinted polymers prepared by precipitation polymerization for the extraction of phenylurea herbicides. J Chromatogr A 1069(2):173–181. doi:10.1016/j.chroma.2005.02.029 Google Scholar
  94. 94.
    Duffy DJ, Das K, Hsu SL, Penelle J, Rotello VM, Stidham HD (2002) Binding efficiency and transport properties of molecularly imprinted polymer thin films. J Am Chem Soc 124(28):8290–8296. doi:10.1021/ja0201146 Google Scholar
  95. 95.
    Pasetto P, Flavin K, Resmini M (2009) Simple spectroscopic method for titration of binding sites in molecularly imprinted nanogels with hydrolase activity. Biosens Bioelectron 25(3):572–578. doi:10.1016/j.bios.2009.03.042 Google Scholar
  96. 96.
    Bompart M, Gheber LA, De Wilde Y, Haupt K (2009) Direct detection of analyte binding to single molecularly imprinted polymer particles by confocal Raman spectroscopy. Biosens Bioelectron 25(3):568–571. doi:10.1016/j.bios.2009.01.020 Google Scholar
  97. 97.
    Muk NS, Narayanaswamy R (2011) Molecularly imprinted polymers as optical sensing receptors: correlation between analytical signals and binding isotherms. Anal Chim Acta 703(2):226–233. doi:10.1016/j.aca.2011.07.032 Google Scholar
  98. 98.
    Yoshikawa M, Guiver MD, Robertson GP (2008) Surface plasmon resonance studies on molecularly imprinted films. J Appl Polym Sci 110(5):2826–2832. doi:10.1002/app.28686 Google Scholar
  99. 99.
    Diltemiz SE, Hur D, Ersoz A, Denizli A, Say R (2009) Designing of MIP based QCM sensor having thymine recognition sites based on biomimicking DNA approach. Biosens Bioelectron 25(3):599–603. doi:10.1016/j.bios.2009.01.032 Google Scholar
  100. 100.
    Diltemiz SE, Hur D, Kecili R, Ersoz A, Say R (2013) New synthesis method for 4-MAPBA monomer and using for the recognition of IgM and mannose with MIP-based QCM sensors. Analyst 138(5):1558–1563. doi:10.1039/c2an36291k Google Scholar
  101. 101.
    El Kirat K, Bartkowski M, Haupt K (2009) Probing the recognition specificity of a protein molecularly imprinted polymer using force spectroscopy. Biosens Bioelectron 24(8):2618–2624. doi:10.1016/j.bios.2009.01.018 Google Scholar
  102. 102.
    El-Sharif HF, Hawkins DM, Stevenson D, Reddy SM (2014) Determination of protein binding affinities within hydrogel-based molecularly imprinted polymers (HydroMIPs). Phys Chem Chem Phys 16(29):15483–15489. doi:10.1039/c4cp01798f Google Scholar
  103. 103.
    Levi L, Raim V, Srebnik S (2011) A brief review of coarse-grained and other computational studies of molecularly imprinted polymers. J Mol Recognit 24(6):883–891. doi:10.1002/jmr.1135 Google Scholar
  104. 104.
    Ansell RJ, Wang D (2009) Imprinted polymers for chiral resolution of (±)-ephedrine. Part 3: NMR predictions and HPLC results with alternative functional monomers. Analyst 134(3):564–576. doi:10.1039/b815145h Google Scholar
  105. 105.
    Ansell RJ, Wang D, Kuah JKL (2008) Imprinted polymers for chiral resolution of (±)-ephedrine. Part 2: probing pre-polymerization equilibria in different solvents by NMR. Analyst 133(12):1673–1683. doi:10.1039/b806376a Google Scholar
  106. 106.
    Schillinger E, Moeder M, Olsson GD, Nicholls IA, Sellergren B (2012) An artificial estrogen receptor through combinatorial imprinting. Chem Eur J 18(46):14773–14783. doi:10.1002/chem.201201428 Google Scholar
  107. 107.
    Meier F, Schott B, Riedel D, Mizaikoff B (2012) Computational and experimental study on the influence of the porogen on the selectivity of 4-nitrophenol molecularly imprinted polymers. Anal Chim Acta 744:68–74. doi:10.1016/j.aca.2012.07.020 Google Scholar
  108. 108.
    Denderz N, Lehotay J, Cizmarik J, Cibulkova Z, Simon P (2012) Thermodynamic study of molecularly imprinted polymer used as the stationary phase in high performance liquid chromatography. J Chromatogr A 1235:77–83. doi:10.1016/j.chroma.2012.02.051 Google Scholar
  109. 109.
    Rosengren AM, Golker K, Karlsson JG, Nicholls IA (2009) Dielectric constants are not enough: principal component analysis of the influence of solvent properties on molecularly imprinted polymer-ligand rebinding. Biosens Bioelectron 25(3):553–557. doi:10.1016/j.bios.2009.06.042 Google Scholar
  110. 110.
    Andersson LI (1996) Application of molecular imprinting to the development of aqueous buffer and organic solvent based radioligand binding assays for (S)-propranolol. Anal Chem 68(1):111–117. doi:10.1021/ac950668+ Google Scholar
  111. 111.
    Haupt K, Mayes AG, Mosbach K (1998) Herbicide assay using an imprinted polymer based system analogous to competitive fluoroimmunoassays. Anal Chem 70(18):3936–3939. doi:10.1021/ac980175f Google Scholar
  112. 112.
    Dong XC, Sun H, Lu XY, Wang HB, Liu SX, Wang N (2002) Separation of ephedrine stereoisomers by molecularly imprinted polymers—influence of synthetic conditions and mobile phase compositions on the chromatographic performance. Analyst 127(11):1427–1432. doi:10.1039/b202295h Google Scholar
  113. 113.
    Sellergren B, Shea KJ (1993) Chiral ion-exchange chromatography—correlation between solute retention and a theoretical ion-exchange model using imprinted polymers. J Chromatogr A 654(1):17–28. doi:10.1016/0021-9673(93)83061-v Google Scholar
  114. 114.
    Umpleby RJ, Bode M, Shimizu KD (2000) Measurement of the continuous distribution of binding sites in molecularly imprinted polymers. Analyst 125(7):1261–1265. doi:10.1039/b002354j Google Scholar
  115. 115.
    Stanley BJ, Szabelski P, Chen YB, Sellergren B, Guiochon G (2003) Affinity distributions of a molecularly imprinted polymer calculated numerically by the expectation-maximization method. Langmuir 19(3):772–778. doi:10.1021/la020747y Google Scholar
  116. 116.
    Wei S, Jakusch M, Mizaikoff B (2007) Investigating the mechanisms of 17 beta-estradiol imprinting by computational prediction and spectroscopic analysis. Anal Bioanal Chem 389(2):423–431. doi:10.1007/s00216-007-1358-0 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of ChemistryUniversity of LeedsLeedsUK

Personalised recommendations