Enzymes for Synthetic Biology of Ambroxide-Related Diterpenoid Fragrance Compounds

Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 148)


Ambrox and related ambroxides are highly priced in the fragrance industry, and valued for their delicate odor and fixative properties. Historically, ambrox was obtained from ambergris, a waxy excretion produced by sperm whales, now an endangered species. Synthetic ambroxides have replaced ambergris in perfume manufacture. Plant labdane diterpenoids can serve as starting material for ambroxide synthesis. Among these, the diterpene alcohol sclareol is the major industrial precursor obtained from cultivated clary sage (Salvia sclarea). In plants, a large family of diterpene synthase (diTPS) enzymes controls key reactions in diterpenoid biosynthesis. Advanced metabolite profiling and high-throughput sequencing of fragrant and medicinal plants have accelerated discovery of novel diTPS functions, providing a resource for combinatorial synthetic biology and metabolic engineering approaches. This chapter highlights recent progress on the discovery, characterization, and engineering of plant diTPSs with potential uses in ambroxide production. It features biosynthesis of sclareol, cis-abienol, and diterpene resin acids, as sources of genes and enzymes for diterpenoid bioproducts.

Graphical Abstract


Ambrox Cytochrome P450 Diterpenoid Fragrance Metabolic engineering Terpene synthase 



We acknowledge the funding support for our research on diterpenoids provided by the University of British Columbia (JB), the Natural Sciences and Engineering Research Council of Canada (JB), Genome Canada (JB), Genome British Columbia (JB), and the University of California at Davis (PZ). Some of the work discussed in this chapter resulted from the Tria Project (, the Treenomix Project (, the SMarTForests Project (, and the PhytoMetaSyn Project ( JB is a UBC Distinguished University Scholar.


  1. 1.
    Davis EM, Croteau R (2000) Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. Biosynthesis: Aromatic Polyketides. Isoprenoids, Alkaloids, Springer, pp 53–95CrossRefGoogle Scholar
  2. 2.
    Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212–229CrossRefGoogle Scholar
  3. 3.
    Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414CrossRefGoogle Scholar
  4. 4.
    Keeling CI, Bohlmann J (2006) Diterpene resin acids in conifers. Phytochemistry 67:2415–2423CrossRefGoogle Scholar
  5. 5.
    Schmelz EA, Huffaker A, Sims JW, Christensen SA, Lu X, Okada K, Peters RJ (2014) Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. Plant J 79:659–678CrossRefGoogle Scholar
  6. 6.
    Zulak KG, Bohlmann J (2010) Terpenoid biosynthesis and specialized vascular cells of conifer defense. J Integr Plant Biol 52:86–97CrossRefGoogle Scholar
  7. 7.
    Schilmiller AL, Pichersky E, Last RL (2012) Taming the hydra of specialized metabolism: how systems biology and comparative approaches are revolutionizing plant biochemistry. Curr Opin Plant Biol 15:338–344CrossRefGoogle Scholar
  8. 8.
    Bohlmann J, Keeling CI (2008) Terpenoid biomaterials. Plant J 54:656–669CrossRefGoogle Scholar
  9. 9.
    Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488:320–328CrossRefGoogle Scholar
  10. 10.
    Zerbe P, Bohlmann J (2014) Metabolic engineering of terpene synthases of conifer defense: bioproducts, biofuels and perfumes. Rec Adv Phytochem 44:85–107Google Scholar
  11. 11.
    Philippe RN, De Mey M, Anderson J, Ajikumar PK (2014) Biotechnological production of natural zero-calorie sweeteners. Curr Opin Biotechnol 26:155–161CrossRefGoogle Scholar
  12. 12.
    Lange BM, Mahmoud SS, Wildung MR, Turner GW, Davis EM, Lange I, Baker RC, Boydston RA, Croteau RB (2011) Improving peppermint essential oil yield and composition by metabolic engineering. Proc Natl Acad Sci USA 108:16944–16949CrossRefGoogle Scholar
  13. 13.
    Frater G, Bajgrowicz JA, Kraft P (1998) Fragrance chemistry. Tetrahedron 54:7633–7703CrossRefGoogle Scholar
  14. 14.
    Sell C (1990) The chemistry of ambergris. Chem Ind 20:516–520Google Scholar
  15. 15.
    Stoll M, Hinder M (1950) Odeur et constitution III les substances bicyclohomofarnésiques. Helv Chim Acta 33:1251–1260CrossRefGoogle Scholar
  16. 16.
    Frija LMT, Frade RFM, Afonso CAM (2011) Isolation, chemical, and biotransformation routes of labdane-type diterpenes. Chem Rev 111:4418–4452CrossRefGoogle Scholar
  17. 17.
    Zerbe P, Hamberger B, Yuen MM, Chiang A, Sandhu HK, Madilao LL, Nguyen A, Hamberger B, Bach SS, Bohlmann J (2013) Gene discovery of modular diterpene metabolism in non-model systems. Plant Physiol 162:1073–1091CrossRefGoogle Scholar
  18. 18.
    Facchini PJ, Bohlmann J, Covello PS, De Luca V, Mahadevan R, Page JE, Ro DK, Sensen CW, Storms R, Martin VJ (2012) Synthetic biosystems for the production of high-value plant metabolites. Trends Biotechnol 30:127–131CrossRefGoogle Scholar
  19. 19.
    Higashi Y, Saito K (2013) Network analysis for gene discovery in plant-specialized metabolism. Plant Cell Environ 36:1597–1606CrossRefGoogle Scholar
  20. 20.
    Zerbe P, Chiang A, Yuen M, Hamberger B, Hamberger B, Draper JA, Britton R, Bohlmann J (2012) Bifunctional cis-abienol synthase from Abies balsamea discovered by transcriptome sequencing and its implications for diterpenoid fragrance production. J Biol Chem 287:12121–12131CrossRefGoogle Scholar
  21. 21.
    Caniard A, Zerbe P, Legrand S, Cohade A, Valot N, Magnard JL, Bohlmann J, Legendre L (2012) Discovery and functional characterization of two diterpene synthases for sclareol biosynthesis in Salvia sclarea (L.) and their relevance for perfume manufacture. BMC Plant Biol 12:119CrossRefGoogle Scholar
  22. 22.
    Diaz-Chavez ML, Moniodis J, Madilao LL, Jancsik S, Keeling CI, Barbour EL, Ghisalberti EL, Plummer JA, Jones CG, Bohlmann J (2013) Biosynthesis of sandalwood oil: Santalum album CYP76F cytochromes P450 produce santalols and bergamotol. PLoS ONE 8:e75053CrossRefGoogle Scholar
  23. 23.
    Schalk M, Pastore L, Mirata MA, Khim S, Schouwey M, Deguerry F, Pineda V, Rocci L, Daviet L (2012) Towards a biosynthetic route to sclareol and amber odorants. J Am Chem Soc 134:18900–18903CrossRefGoogle Scholar
  24. 24.
    Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532CrossRefGoogle Scholar
  25. 25.
    Zerbe P, Chiang A, Dullat H, O’Neil-Johnson M, Starks C, Hamberger B, Bohlmann J (2014) Diterpene synthases of the biosynthetic system of medicinally active diterpenoids in Marrubium vulgare. Plant J 79:914–927CrossRefGoogle Scholar
  26. 26.
    Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330:70–74CrossRefGoogle Scholar
  27. 27.
    Kawanobe T, Kogami K, Matsui M (1986) New syntheses of (±)-ambrox, (±)-ambra oxide and their stereoisomers. Agric Biol Chem 50:1475–1480CrossRefGoogle Scholar
  28. 28.
    Snowden RL (2008) Cetalox® and analogues: synthesis via acid-mediated polyene cyclizations. Chem Biodivers 5:958–969CrossRefGoogle Scholar
  29. 29.
    Barrero AF, Alvarez-Manzaneda EJ, Altarejos J, Salido S, Ramos JM (1994) Synthesis of Ambrox® from (-)-sclareol and (+)-cis-abienol. Tetrahedron 49:10405–10412CrossRefGoogle Scholar
  30. 30.
    Barrero AF, Mar Herrador M, Arteaga P, Arteaga JF, Arteaga AF (2012) Communic acids: occurrence, properties and use as chirons for the synthesis of bioactive compounds. Molecules 17:1448–1467CrossRefGoogle Scholar
  31. 31.
    Bolster MG, Jansen BJM, de Groot A (2001) The synthesis of (-)-Ambrox® starting from labdanolic acid. Tetrahedron 57:5657–5662CrossRefGoogle Scholar
  32. 32.
    Bolster MG, Jansen BJM, de Groot A (2001) The synthesis of Ambrox®-like compounds starting from (+)-larixol. Tetrahedron 57:5663–5679CrossRefGoogle Scholar
  33. 33.
    Castro JM, Salido S, Altarejos J, Nogueras M, Sanchez A (2002) Synthesis of Ambrox® from labdanolic acid. Tetrahedron 58:5941–5949CrossRefGoogle Scholar
  34. 34.
    Koyama H, Kaku Y, Ohno M (1987) Synthesis of (-)-Ambrox® from L-abietic acid. Tetrahedron Lett 28:2863–2866CrossRefGoogle Scholar
  35. 35.
    Peters RJ (2010) Two rings in them all: the labdane-related diterpenoids. Nat Prod Rep 27:1521–1530CrossRefGoogle Scholar
  36. 36.
    Caissard J-C, Olivier T, Delbecque C, Palle S, Garry PP, Audran A, Valot N, Moja S, Nicolé F, Magnard JL, Legrand S, Baudino S, Jullien F (2012) Extracellular localization of the diterpene sclareol in clary sage (Salvia sclarea L, Lamiaceae). PLoS ONE 7:e48253CrossRefGoogle Scholar
  37. 37.
    Barton D, Parekh S, Taylor D, Tse C (1994) An efficient synthesis of (-)-dodecahydro-3a, 6, 6, 9a-tetramethylnaphthol [2,1-B] furan from (-)-sclareol. Tetrahedron Lett 35:5801–5804CrossRefGoogle Scholar
  38. 38.
    Gray PS, Mills JS (1964) The isolation of abienol from Canada Balsam, the oleoresin of Abies balsamea (L) Mill. J Chem Soc 1:5822–5825CrossRefGoogle Scholar
  39. 39.
    De Carvalho CCCR, da Fonseca MMR (2006) Biotransformation of terpenes. Biotechnol Adv 24:134–142CrossRefGoogle Scholar
  40. 40.
    Cheetham PSJ (1993) The use of biotransformations for the production of flavours and fragrances. Trends Biotechnol 11:478–488CrossRefGoogle Scholar
  41. 41.
    Musharraf SG, Naz S, Najeeb A, Khan S, Choudhary MI (2012) Biotransformation of perfumery terpenoids, (-)-Ambrox® by a fungal culture Macrophomina phaseolina and a plant cell suspension culture of Peganum harmala. Chem Cent J 6:82CrossRefGoogle Scholar
  42. 42.
    Nasib A, Musharraf SG, Hussain S, Khan S, Anjum S, Ali S, Atta-Ur-Rahman AU, Choudhary MI (2006) Biotransformation of (-)-Ambrox® by cell suspension cultures of Actinidia deliciosa. J Nat Prod 69:957–959CrossRefGoogle Scholar
  43. 43.
    Sallaud C, Giacalone C, Töpfer R, Goepfert S, Bakaher N, Rösti S, Tissier A (2012) Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes. Plant J 72:1–17CrossRefGoogle Scholar
  44. 44.
    Brückner K, Božić D, Manzano D, Papaefthimiou D, Pateraki I, Scheler U, Ferrer A, de Vos RC, Kanellis AK, Tissier A (2014) Characterization of two genes for the biosynthesis of abietane-type diterpenes in rosemary (Rosmarinus officinalis) glandular trichomes. Phytochemistry 101:52–64CrossRefGoogle Scholar
  45. 45.
    Pateraki I, Andersen-Ranberg J, Hamberger B, Heskes AM, Martens HJ, Zerbe P, Bach SS, Møller BL, Bohlmann J, Hamberger B (2014) Manoyl oxide (13R), the biosynthetic precursor of forskolin, is synthesized in specialized root cork cells in Coleus forskohlii. Plant Physiol 164:1222–1236CrossRefGoogle Scholar
  46. 46.
    Gao W, Sun HX, Xiao H, Cui G, Hillwig ML, Jackson A, Wang X, Shen Y, Zhao N, Zhang L, Wang XJ, Peters RJ, Huang L (2014) Combining metabolomics and transcriptomics to characterize tanshinone biosynthesis in Salvia miltiorrhiza. BMC Genom 15:73CrossRefGoogle Scholar
  47. 47.
    Guo J, Zhou YJ, Hillwig ML, Shen Y, Yang L, Wang Y, Zhang X, Liu W, Peters RJ, Chen X, Zhao ZK, Huang L (2013) CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. Proc Natl Acad Sci USA 110:12108–12113CrossRefGoogle Scholar
  48. 48.
    Zi J, Peters RJ (2013) Characterization of CYP76AH4 clarifies phenolic diterpenoid biosynthesis in the Lamiaceae. Org Biomol Chem 11:7650–7652CrossRefGoogle Scholar
  49. 49.
    Hamberger B, Ohnishi T, Hamberger B, Séguin A, Bohlmann J (2011) Evolution of diterpene metabolism: Sitka spruce CYP720B4 catalyzes multiple oxidations in resin acid biosynthesis of conifer defense against insects. Plant Physiol 157:1677–1695CrossRefGoogle Scholar
  50. 50.
    Beale MH (1990) The biosynthesis of C5-C20 terpenoid compounds. Nat Prod Rep 7:25–39CrossRefGoogle Scholar
  51. 51.
    Nelson D, Werck-Reichhart DA (2011) P450-centric view of plant evolution. Plant J 66:194–211CrossRefGoogle Scholar
  52. 52.
    Gao Y, Honzatko RB, Peters RJ (2012) Terpenoid synthase structures: a so far incomplete view of complex catalysis. Nat Prod Rep 29:1153–1175CrossRefGoogle Scholar
  53. 53.
    Hayashi K-I, Kawaide H, Notomi M, Sakigi Y, Matsuo A, Nozaki H (2006) Identification and functional analysis of bifunctional ent-kaurene synthase from the moss Physcomitrella patens. FEBS Lett 580:6175–6181CrossRefGoogle Scholar
  54. 54.
    Mafu S, Hillwig ML, Peters RJ (2011) A novel labda-7,13E-dien-15-ol-producing bifunctional diterpene synthase from Selaginella moellendorffii. Chem Bio Chem 12:1984–1987CrossRefGoogle Scholar
  55. 55.
    Keeling CI, Bohlmann J (2006) Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol 170:657–675CrossRefGoogle Scholar
  56. 56.
    Hall DE, Zerbe P, Jancsik S, Quesada AL, Dullat H, Madilao LL, Yuen M, Bohlmann J (2012) Evolution of conifer diterpene synthases: Diterpene resin acid biosynthesis in lodgepole pine and jack pine involves monofunctional and bifunctional diterpene synthases. Plant Physiol 161:600–616CrossRefGoogle Scholar
  57. 57.
    Xu M, Wilderman PR, Morrone D, Xu J, Roy A, Margis-Pinheiro M, Upadhyaya NM, Coates RM, Peters RJ (2007) Functional characterization of the rice kaurene synthase-like gene family. Phytochemistry 68:312–326CrossRefGoogle Scholar
  58. 58.
    Morrone D, Hillwig ML, Mead ME, Lowry L, Fulton DB, Peters RJ (2011) Evident and latent plasticity across the rice diterpene synthase family with potential implications for the evolution of diterpenoid metabolism in the cereals. Biochem J 435:589–595CrossRefGoogle Scholar
  59. 59.
    Zhou K, Xu M, Tiernan M, Xie Q, Toyomasu T, Sugawara C, Oku M, Usui M, Mitsuhashi W, Chono M, Chandler PM, Peters RJ (2012) Functional characterization of wheat ent-kaurene(-like) synthases indicates continuing evolution of labdane-related diterpenoid metabolism in the cereals. Phytochemistry 84:47–55CrossRefGoogle Scholar
  60. 60.
    Yadav VG, De Mey M, Lim CG, Ajikumar PK, Stephanopoulos G (2012) The future of metabolic engineering and synthetic biology: towards a systematic practice. Metab Eng 14:233–241CrossRefGoogle Scholar
  61. 61.
    Zhou YJ, Gao W, Rong Q, Jin G, Chu H, Liu W, Yang W, Zhu Z, Li G, Zhu G, Huang L, Zhao ZK (2012) Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J Am Chem Soc 134:3234–3241CrossRefGoogle Scholar
  62. 62.
    Ignea C, Ioannou E, Georgantea P, Loupassaki S, Trikka FA, Kanellis AK, Makris AM, Roussis V, Kampranis SC (2015) Reconstructing the chemical diversity of labdane-type diterpene biosynthesis in yeast. Metab Eng 28:91–103CrossRefGoogle Scholar
  63. 63.
    Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943CrossRefGoogle Scholar
  64. 64.
    Bach SS, King BC, Zhan X, Simonsen HT, Hamberger B (2014) Heterologous stable expression of terpenoid biosynthetic genes using the moss Physcomitrella patens. Methods Mol Biol 1153:257–271CrossRefGoogle Scholar
  65. 65.
    Brückner K, Tissier A (2013) High-level diterpene production by transient expression in Nicotiana benthamiana. Plant Methods 9:46CrossRefGoogle Scholar
  66. 66.
    Ignea C, Trikka FA, Nikolaidis AK, Georgantea P, Ioannou E, Loupassaki S, Kefalas P, Kanellis AK, Roussis V, Makris AM, Kampranis SC (2015) Efficient diterpene pro duction in yeast by engineering Erg20p into a geranylgeranyl diphosphate synthase. Metab Eng 27:65–75CrossRefGoogle Scholar
  67. 67.
    Bailey JA, Carter GA, Burden RS, Wain RL (1975) Control of rust diseases by diterpenes from Nicotiana glutinosa. Nature 255:328–329CrossRefGoogle Scholar
  68. 68.
    Couladis M, Tzakou O, Stojanovic D, Mimica-Dukic N, Jancic R (2001) The essential oil composition of Salvia argentea L. Flavour Fragr J 16:227–229CrossRefGoogle Scholar
  69. 69.
    Falara V, Pichersky E, Kanellis AK (2010) A copal-8-ol diphosphate synthase from the angiosperm Cistus creticus subsp. creticus is a putative key enzyme for the formation of pharmacologically active, oxygen-containing labdane-type diterpenes. Plant Physiol 154:301–310CrossRefGoogle Scholar
  70. 70.
    Wu Y, Zhou K, Toyomasu T, Sugawara C, Oku M, Abe S, Usui M, Mitsuhashi W, Chono M, Chandler PM, Peters RJ (2012) Functional characterization of wheat copalyl diphosphate synthases sheds light on the early evolution of labdane-related diterpenoid metabolism in the cereals. Phytochemistry 84:40–46CrossRefGoogle Scholar
  71. 71.
    Keeling CI, Madilao LL, Zerbe P, Dullat HK, Bohlmann J (2011) The primary diterpene synthase products of Picea abies levopimaradiene/abietadiene synthase (PaLAS) are epimers of a thermally unstable diterpenol. J Biol Chem 286:21145–21153CrossRefGoogle Scholar
  72. 72.
    Hillwig ML, Xu M, Toyomasu T, Tiernan MS, Wei G, Cui G, Huang L, Peters RJ (2011) Domain loss has independently occurred multiple times in plant terpene synthase evolution. Plant J 68:1051–1060CrossRefGoogle Scholar
  73. 73.
    Peters RJ, Flory JE, Jetter R, Ravn MM, Lee HJ, Coates RM, Croteau RB (2000) Abietadiene synthase from grand fir (Abies grandis): characterization and mechanism of action of the ‘pseudomature’ recombinant enzyme. Biochemistry 39:15592–15602CrossRefGoogle Scholar
  74. 74.
    Martin DM, Fäldt J, Bohlmann J (2004) Functional characterization of nine Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol 135:1908–1927CrossRefGoogle Scholar
  75. 75.
    Keeling CI, Weisshaar S, Ralph SG, Jancsik S, Hamberger B, Dullat HK, Bohlmann J (2011) Transcriptome mining, functional characterization, and phylogeny of a large terpene synthase gene family in spruce (Picea spp.). BMC Plant Biol 11:43CrossRefGoogle Scholar
  76. 76.
    Schepmann HG, Pang J, Matsuda SP (2001) Cloning and characterization of Ginkgo biloba levopimaradiene synthase which catalyzes the first committed step in ginkgolide biosynthesis. Arch Biochem Biophys 392:263–269CrossRefGoogle Scholar
  77. 77.
    Criswell J, Potter K, Shephard F, Beale MH, Peters RJ (2012) A single residue change leads to a hydroxylated product from the class II diterpene cyclization catalyzed by abietadiene synthase. Org Lett 14:5828–5831CrossRefGoogle Scholar
  78. 78.
    Gao W, Hillwig ML, Huang L, Cui G, Wang X, Kong J, Yang B, Peters RJ (2009) A functional genomics approach to tanshinone biosynthesis provides stereochemical insights. Org Lett 11:5170–5173CrossRefGoogle Scholar
  79. 79.
    Sugai Y, Ueno Y, Hayashi K, Oogami S, Toyomasu T, Matsumoto S, Natsume M, Nozaki H, Kawaide H (2011) Enzymatic (13)C labeling and multidimensional NMR analysis of miltiradiene synthesized by bifunctional diterpene cyclase in Selaginella moellendorffii. J Biol Chem 286:42840–42847CrossRefGoogle Scholar
  80. 80.
    Coates RM (1976) Biogenetic-type rearrangements of terpenes. Fortschr Chem Org Naturst 33:73–230Google Scholar
  81. 81.
    Trapp SC, Croteau RB (2001) Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158:811–832Google Scholar
  82. 82.
    Bohlmann J, Croteau R (1999) Diversity and variability of terpenoid defences in conifers: molecular genetics, biochemistry and evolution of the terpene synthase gene family in grand fir (Abies grandis). Novartis Found Symp 223:132–145Google Scholar
  83. 83.
    Ro D-K, Bohlmann J (2006) Diterpene resin acid biosynthesis in loblolly pine (Pinus taeda): functional characterization of abietadiene/levopimaradiene synthase (PtTPS-LAS) cDNA and subcellular targeting of PtTPS-LAS and abietadienol/abietadienal oxidase (PtAO, CYP720B1). Phytochemistry 67:1572–1578CrossRefGoogle Scholar
  84. 84.
    Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA, Yuen MM, Keeling CI, Brand D, Vandervalk BP, Kirk H, Pandoh P, Moore RA, Zhao Y, Mungall AJ, Jaquish B, Yanchuk A, Ritland C, Boyle B, Bousquet J, Ritland K, Mackay J, Bohlmann J, Jones SJ (2013) Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics 29:1492–1497CrossRefGoogle Scholar
  85. 85.
    Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, Vicedomini R, Sahlin K, Sherwood E, Elfstrand M, Gramzow L, Holmberg K, Hällman J, Keech O, Klasson L, Koriabine M, Kucukoglu M, Käller M, Luthman J, Lysholm F, Niittylä T, Olson A, Rilakovic N, Ritland C, Rosselló JA, Sena J, Svensson T, Talavera-López C, Theißen G, Tuominen H, Vanneste K, Wu ZQ, Zhang B, Zerbe P, Arvestad L, Bhalerao R, Bohlmann J, Bousquet J, Garcia Gil R, Hvidsten TR, de Jong P, MacKay J, Morgante M, Ritland K, Sundberg B, Thompson SL, Van de Peer Y, Andersson B, Nilsson O, Ingvarsson PK, Lundeberg J, Jansson S (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584CrossRefGoogle Scholar
  86. 86.
    Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, Cardeno C, Koriabine M, Holtz-Morris AE, Liechty JD, Martínez-García PJ, Vasquez-Gross HA, Lin BY, Zieve JJ, Dougherty WM, Fuentes-Soriano S, Wu LS, Gilbert D, Marçais G, Roberts M, Holt C, Yandell M, Davis JM, Smith KE, Dean JF, Lorenz WW, Whetten RW, Sederoff R, Wheeler N, McGuire PE, Main D, Loopstra CA, Mockaitis K, Dejong PJ, Yorke JA, Salzberg SL, Langley CH (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 15:R59CrossRefGoogle Scholar
  87. 87.
    De La Torre AR, Birol I, Bousquet J, Ingvarsson PK, Jansson S, Jones SJ, Keeling CI, MacKay J, Nilsson O, Ritland K, Street N, Yanchuk A, Zerbe P, Bohlmann J (2014) Insights into conifer giga-genomes. Plant Physiol 166:1724–1732CrossRefGoogle Scholar
  88. 88.
    Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, Marçais G, Puiu D, Roberts M, Wegrzyn JL, de Jong PJ, Neale DB, Salzberg SL, Yorke JA, Langley CH (2014) Sequencing and assembly of the 22-gb loblolly pine genome. Genetics 196:875–890CrossRefGoogle Scholar
  89. 89.
    Hillwig ML, Mann FM, Peters RJ (2011) Diterpenoid biopolymers: new directions for renewable materials engineering. Biopolymers 95:71–76CrossRefGoogle Scholar
  90. 90.
    Leonard E, Ajikumar PK, Thayer K, Xiao WH, Mo JD, Tidor B, Stephanopoulos G, Prather KL (2010) Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proc Natl Acad Sci USA 107:13654–13659CrossRefGoogle Scholar
  91. 91.
    Keasling JD (2012) Synthetic biology and the development of tools for metabolic engineering. Metab Eng 14:189–195CrossRefGoogle Scholar
  92. 92.
    Buijs NA, Siewers V, Nielsen J (2013) Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr Opin Chem Biol 17:480–488CrossRefGoogle Scholar
  93. 93.
    Kitaoka N, Lu X, Yang B, Peters RJ (2014) The application of synthetic biology to elucidation of plant mono-, sesqui- and diterpenoid metabolism. Mol Plant. doi: 10.1093/mp/ssu104 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
  2. 2.Department of Plant BiologyUniversity of California, DavisDavisUSA

Personalised recommendations