Advertisement

Hydrodynamics, Fungal Physiology, and Morphology

  • L. Serrano-Carreón
  • E. Galindo
  • J. A. Rocha-Valadéz
  • A. Holguín-Salas
  • G. Corkidi
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 149)

Abstract

Abstract

Filamentous cultures, such as fungi and actinomycetes, contribute substantially to the pharmaceutical industry and to enzyme production, with an annual market of about 6 billion dollars. In mechanically stirred reactors, most frequently used in fermentation industry, microbial growth and metabolite productivity depend on complex interactions between hydrodynamics, oxygen transfer, and mycelial morphology. The dissipation of energy through mechanically stirring devices, either flasks or tanks, impacts both microbial growth through shearing forces on the cells and the transfer of mass and energy, improving the contact between phases (i.e., air bubbles and microorganisms) but also causing damage to the cells at high energy dissipation rates. Mechanical-induced signaling in the cells triggers the molecular responses to shear stress; however, the complete mechanism is not known. Volumetric power input and, more importantly, the energy dissipation/circulation function are the main parameters determining mycelial size, a phenomenon that can be explained by the interaction of mycelial aggregates and Kolmogorov eddies. The use of microparticles in fungal cultures is also a strategy to increase process productivity and reproducibility by controlling fungal morphology. In order to rigorously study the effects of hydrodynamics on the physiology of fungal microorganisms, it is necessary to rule out the possible associated effects of dissolved oxygen, something which has been reported scarcely. At the other hand, the processes of phase dispersion (including the suspended solid that is the filamentous biomass) are crucial in order to get an integral knowledge about biological and physicochemical interactions within the bioreactor. Digital image analysis is a powerful tool for getting relevant information in order to establish the mechanisms of mass transfer as well as to evaluate the viability of the mycelia. This review focuses on (a) the main characteristics of the two most common morphologies exhibited by filamentous microorganisms; (b) how hydrodynamic conditions affect morphology and physiology in filamentous cultures; and (c) techniques using digital image analysis to characterize the viability of filamentous microorganisms and mass transfer in multiphase dispersions. Representative case studies of fungi (Trichoderma harzianum and Pleurotus ostreatus) exhibiting different typical morphologies (disperse mycelia and pellets) are discussed.

Graphical Abstract

Keywords

Hydrodynamics Image analysis Mass transfer Morphology Physiology 

Abbreviations and Symbols

\( C_{{{\text{O}}_{2} }} \)

Concentration of dissolved oxygen in the liquid (kg O2 m−3)

d32

Sauter mean diameter (μm)

D

Diameter of the impeller (m)

Dcrit

Critical diameter (m)

Deff

Diffusion diameter (m2 s−1)

deq

Equilibrium diameter (μm)

dh/dr

Hyphal gradient in the pellet periphery (% μm−1)

di

Size of the drops/bubbles (μm)

\( D_{{{\text{O}}_{2} }} \)

Molecular diffusion coefficient (m2 s−1)

EDCF

Energy dissipation/circulation function (kW m−3 s−1)

FlG

Gaseous flow (–)

i

Volume unit

k

Constant that depends on the geometry of the impeller (–)

kb

Number of volumes sampled (–)

kLa

Volumetric oxygen transfer coefficient (h−1)

L

Hyphal length (μm)

N

Stirring speed (s−1)

ni

Number of drops/bubbles per volume i

P

Power supplied (kW)

Pp

Porosity of the pellet (–)

P/VL

Volume power drawn (kW m−3)

\( q_{{{\text{O}}_{2} }} \)

Specific rate of oxygen consumption (kg O2 kg−1 s−1)

r

Aggregate density (kg m−3)

\( R_{{{\text{O}}_{2} }} \)

Rate of oxygen consumption per unit volume (kg O2 m−3 s−1)

tc

Circulation time (s)

VL

Volume of liquid (m3)

Greek Letters

λ

Size of Kolmogorov microscale (μm)

ε

Local energy supplied (W kg−1)

ν

Viscosity (Pa s)

Abbreviations

6PP

6-pentyl-α-pyrone

ATP

Adenosine triphosphate

CFU

Colony-forming units

DNA

Deoxyribonucleic acid

FDA

Fluorescein diacetate

GFP

Green fluorescent protein

RNA

Ribonucleic acid

RPB

Reciprocating plate bioreactor

rpm

Radians per minute (stirring speed)

vvm

Volume of gas per volume of liquid per minute

Notes

Acknowledgments

DGAPA-UNAM (IT 201014 & IN 201813) and CONACyT (240438) for financial support.

References

  1. 1.
    Galarza Vázquez K (2014) Transforman hongos con tecnología de punta para producir compuestos industriales. Periódico: Investigación y Desarrollo del Foro Consultivo Científico y Tecnológico, AC, Mayo 2014, no. 318, año XXII, p 8Google Scholar
  2. 2.
    Braun S, Vecht-Lifshitz SE (1991) Mycelial morphology and metabolite production. TIBTECH 9:63–68Google Scholar
  3. 3.
    Janssens L, De Pooter HL, Schamp NM, Vandamme EJ (1992) Production of flavors by microorganisms. Process Biochem 27:195–215Google Scholar
  4. 4.
    Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22:189–259Google Scholar
  5. 5.
    Paul GC, Thomas CR (1996) A structured model for hyphal differentiation and penicillin production using Penicillium chrysogenum. Biotechnol Bioeng 51:558–572Google Scholar
  6. 6.
    Deckwer W-D, Jahn D, Hempel D, Zeng A-P (2006) Systems biology approaches to bioprocess development. Eng Life Sci 6(5):455–469Google Scholar
  7. 7.
    Oncu S, Tari C, Unluturk S (2007) Effect of various process parameters on morphology, rheology, and polygalacturonase production by Aspergillus sojae in a batch bioreactor. Biotechnol Prog 23:836–845Google Scholar
  8. 8.
    Krull R, Cordes C, Horn H, Kampen I, Kwade A, Neu TR, Nörtemann B (2010) Morphology of filamentous fungi: linking cellular biology to process engineering using Aspergillus niger. Adv Biochem Eng Biotechnol 121:1–21Google Scholar
  9. 9.
    Núñez-Ramírez DM, Medina-Torres L, Valencia-López JJ, Calderas F, López-Miranda J, Medrano-Roldán H, Solís-Soto A (2012) Study of the rheological properties of a fermentation broth of the fungus Beauveria bassiana in a bioreactor under different hydrodynamic conditions. J Microbiol Biotechnol 22(11):1494–1500Google Scholar
  10. 10.
    Grimm LH, Kelly S, Völkerding II, Krull R, Hempel DC (2005) Influence of mechanical stress and surface interaction on the aggregation of Aspergillus niger conidia. Biotechnol Bioeng 92(7):879–888Google Scholar
  11. 11.
    García-Soto MJ, Botello-Álvarez E, Jiménez-Islas H, Navarrete-Bolaños J, Barajas-Conde E, Rico-Martínez R (2006) Growth morphology and hydrodynamics of filamentous fungi in submerged cultures. In: Guevara-González G, Torres-Pacheco I (eds) Advances in agricultural and food biotechnology, Chap. 2. Research Signpost, Kerala, pp 17–34Google Scholar
  12. 12.
    Krull R, Cordes C, Horn H, Kampen I, Kwade A, Neu TR, Nörtemann B (2010) Morphology of filamentous fungi: linking cellular biology to process engineering using Aspergillus niger. Adv Biochem Eng/Biotechnol 121:1–21Google Scholar
  13. 13.
    Nielsen J, Johansen CL, Jacobsen M, Krabben P, Villadsen J (1995) Pellet formation and fragmentation in submerged cultures of Penicillium chrysogenum and its relation to penicillin production. Biotechnol Prog 11(1):93–98Google Scholar
  14. 14.
    Gibbs PA, Seviour RJ, Schmid F (2000) Growth of filamentous fungi in submerged culture: problems and possible solutions. Crit Rev Biotechnol 20(1):17–48Google Scholar
  15. 15.
    Olsvik E, Kristiansen B (1994) Rheology of filamentous fermentations. Biotechnol Adv 12:1–39Google Scholar
  16. 16.
    Riley GL, Tucker KG, Paul GC, Thomas CR (2000) Effect of biomass concentration and mycelial morphology on fermentation broth rheology. Biotechnol Bioeng 68:160–172Google Scholar
  17. 17.
    Gabelle JC, Jourdier E, Licht RB, Chaabane B, Henaut I, Morchain J, Augier F (2012) Impact of rheology on the mass transfer coefficient during the growth phase of Trichoderma reesei in stirred bioreactor. Chem Eng Sci 75:408–417Google Scholar
  18. 18.
    Dhillon GS, Kaur Brar S, Kaur S, Verma M (2013) Rheological studies during submerged citric acid fermentation by Aspergillus niger in stirred fermentor using apple pomace ultrafiltration sludge. Food Bioprocess Technol 6:1240–1250Google Scholar
  19. 19.
    Wucherpfennig T, Kiep KA, Driouch H, Wittmann C, Krull R (2010) Morphology and rheology in filamentous cultivations, Chap. 4. In: Advances in applied microbiology, vol 72. Elsevier Inc., London, pp 89–136Google Scholar
  20. 20.
    Wittler R, Baumgartl H, Lübbers DW, Schügerl K (1986) Investigations of oxygen transfer into Penicilium chrysogenum pellets by microprobe measurements. Biotechnol Bioeng 28:1024–1036Google Scholar
  21. 21.
    Smith JJ, Lilly MD, Fox RI (1990) The effect of agitation on the morphology and penicillin production of Penicillium chrysogenum. Biotechnol Bioeng 35:1011–1023Google Scholar
  22. 22.
    Nienow AW (1990) Agitators for mycelial fermentations. TIBTECH 8:224–233Google Scholar
  23. 23.
    Cui YQ, van der Lans RGJM, Luyben KChAM (1998) Effects of dissolved oxygen tension and mechanical forces on fungal morphology in submerged fermentation. Biotechnol Bioeng 57:409–419Google Scholar
  24. 24.
    Li ZJ, Shukla V, Fordyce AP, Pedersen AG, Wenger KS, Marten MR (2000) Fungal morphology and fragmentation behavior in a fed-batch Aspergillus oryzae fermentation at the production scale. Biotechnol Bioeng 70:300–312Google Scholar
  25. 25.
    Olmos E, Mehmood N, Haj Husein L, Georgen JL, Fick M, Delaunay S (2013) Effect of bioreactor hydrodynamic on the physiology of Streptomyces. Bioprocess Biosyst Eng 36:259–272Google Scholar
  26. 26.
    Makagiansar HY, Ayazi-Shamlou P, Thomas CR, Lilly MD (1993) The influence of mechanical forces on the morphology and penicillin production of Penicillium chrysogenum. Bioprocess Eng 9:83–90Google Scholar
  27. 27.
    Wucherpfennig T, Hestler T, Krull R (2011) Morphology engineering-osmolality and its effect on Aspergillus niger morphology and productivity. Microb Cell Fact 10(58):2–15Google Scholar
  28. 28.
    van Veluw GJ, Petrus MLC, Gubbens J, de Graaf R, de Jong IP, van Wezel GP, Wösten HAB, Claessen D (2012) Analysis of two distinct mycelia populations in liquid-grown Streptomyces cultures using a flow cytometry-based proteomics approach. Appl Microbiol Biotechnol 96:1301–1312Google Scholar
  29. 29.
    Kelly S, Grimm LH, Hengstler J, Schultheis E, Krull R, Hempel DC (2004) Agitation effects on submerged growth and product formation of Aspergillus niger. Bioprocess Biosyst Eng 26:315–323Google Scholar
  30. 30.
    Sainz Herrán N, Casas López JL, Sánchez Pérez JA, Chisti Y (2008) Effects of ultrasound on culture of Aspergillus terreus. J Chem Technol Biotechnol 83:593–600Google Scholar
  31. 31.
    Zhou Z, Du G, Hua Z, Zhou J, Chen J (2011) Optimization of fumaric acid production by Rhizopus delemar based on the morphology formation. Bioresource Technol 102:9345–9349Google Scholar
  32. 32.
    Tepwong P, Giri A, Ohshima T (2012) Effect of mycelia morphology on ergothioneine production during liquid fermentation of Lentinula edodes. Mycosci 53:102–112Google Scholar
  33. 33.
    Cai M, Zhang Y, Hu W, Shen W, Yu Z, Zhou W, Jiang T, Zhou X, Zhang Y (2014) Genetically shaping morphology of the filamentous fungus Aspergillus glaucus for production of antitumor polyketide aspergiolide A. Microb Cell Fact 13:73–83Google Scholar
  34. 34.
    Hille A, Neu TR, Hempel DC, Horn H (2009) Effective diffusivities and mass fluxes in fungal biopellets. Biotechnol Bioeng 103(6):1202–1213Google Scholar
  35. 35.
    Driouch H, Hänsch R, Wucherpfennig T, Krull R, Wittmann C (2012) Improved enzyme production by bio-pellets of Aspergillus niger: targeted morphology engineering using titanate microparticles. Biotechnol Bioeng 109(2):462–471Google Scholar
  36. 36.
    Xia X, Lin S, Xia XX, Cong FS, Zhong JJ (2014) Significance of agitation-induced shear stress on mycelium morphology and lavendamycin production by engineered Streptomyces flocculus. Appl Microbiol Biotechnol 98:4399–4407Google Scholar
  37. 37.
    Carlsen M, Spohr AB, Nielsen J, Villadsen J (1996) Morphology and physiology of an α-amylase producing strain of Aspergillus oryzae during batch cultivations. Biotechnol Bioeng 49:266–276Google Scholar
  38. 38.
    Colin VL, Baigorí MD, Pera LM (2013) Tailoring fungal morphology of Aspergillus niger MYA 135 by altering the hyphal morphology and the conidia adhesion capacity: biotechnological applications. AMB Express 3(27):1–13Google Scholar
  39. 39.
    Lin P-J, Scholz A, Krull R (2010) Effect of volumetric power input by aeration and agitation on pellet morphology and product formation of Aspergillus niger. Biochem Eng J 49:213–220Google Scholar
  40. 40.
    El-Enshasy H, Kleine J, Rinas U (2006) Agitation effects on morphology and protein productive fractions of filamentous and pelleted growth forms of recombinant Aspergillus niger. Process Biochem 41:2103–2112Google Scholar
  41. 41.
    Wösten HAB, van Veluw GJ, de Bekker C, Krijgsheld P (2013) Heterogeneity in the mycelium: implications for the use of fungi as cell factories. Biotechnol Lett 35:1155–1164Google Scholar
  42. 42.
    Levin AM, de Vries RP, Conesa A, de Bekker C, Talon M, Menke HH, van Peij NNME, Wösten HAB (2007) Spatial differentation in the vegetative mycelium of Aspergillus niger. Eukaryot Cell 6(12):2311–2322Google Scholar
  43. 43.
    de Bekker C, van Veluw GJ, Vinck A, Wiebenga A, Wösten HAB (2011) Heterogeneity of Aspergillus niger microcolonies in liquid shaken cultures. Appl Environ Microbiol 77(4):1263–1267Google Scholar
  44. 44.
    O’Cleirigh C, Casey JT, Walsh PK, O’Shea DG (2005) Morphological engineering of Streptomyces hygroscopicus var. geldanus: regulation of pellets morphology through manipulation of broth viscosity. Appl Microbiol Biotechnol 68:305–310Google Scholar
  45. 45.
    Dobson LF, O´Cleirigh CC, O´Shea DG (2008) The influence of morphology on geldanamycin production in submerged fermentations of Streptomyces hygroscopicus var. geldanus. Appl Microbiol Biotechnol 79:859–866Google Scholar
  46. 46.
    Ghojavand H, Bonakdarpur B, Heydarian SM, Hamedi J (2011) The inter-relationship between inoculums concentration, morphology, rheology and erythromycin productivity in submerged cultivation. Braz J Chem Eng 28(4):565–574Google Scholar
  47. 47.
    Yao L-Y, Zhu Y-H, Jiao R-H, Lu Y-H, Tan R-X (2014) Enhanced production of fumigaclavine C by ultrasound stimulation in a two-stage culture of Aspergillus fumigatus CY018. Bioresource Technol 159:112–117Google Scholar
  48. 48.
    Prokop A, Bajpai R (1992) The sensitivity of biocatalysts to hydrodynamic shear stress. Adv Appl Microbiol 37:165–232Google Scholar
  49. 49.
    Chisti Y (2001) Hydrodynamic damage to animal cells. Crit Rev Biotechnol 21:67–110Google Scholar
  50. 50.
    Kumamoto CA (2008) Molecular mechanisms of mechanosensing and their roles in fungal contact sensing. Nature Rev Microbiol 6:667–673Google Scholar
  51. 51.
    Garcia-Ochoa F, Escobar S, Gomez E (2015) Specific oxygen uptake rate as indicator of cell response of Rhodococcus erythropolis cultures to shear effects. Chem Eng Sci 122:491–499Google Scholar
  52. 52.
    Teng Y, Xu Y, Wang D (2009) Changes in morphology of Rhizopus chinensis in submerged fermentation and their effect on production of mycelium bound lipase. Bioprocess Biosyst Eng 32:397–405Google Scholar
  53. 53.
    Chipeta ZA, du Preez JC, Christopher L (2008) Effect of cultivation pH and agitation rate on growth and xylanase production by Aspergillus oryzae in spent sulphite liquor. J Ind Microbiol Biotechnol 35:587–594Google Scholar
  54. 54.
    Albaek MO, Gernaey KV, Hansen MS, Stocks SM (2011) Modeling enzyme production with Aspergillus oryzae in pilot scale vessels with different agitation, aeration, and agitator types. Biotechnol Bioeng 108(8):1828–1840Google Scholar
  55. 55.
    Mehmood N, Olmos E, Marchal P, Georgen J-L, Delaunay S (2010) Relation between pristinamycins production by Streptomyces pristinaespiralis, power dissipation and volumetric gas-liquid mass transfer coefficient, kLa. Process Biochem 45:1779–1786Google Scholar
  56. 56.
    Mehmood N, Olmos E, Georgen J-L, Blanchard F, Ullisch D, Klöckner W, Büchs J, Delaunay S (2011) Oxygen supply controls the onset of pristinamycins production by Streptomyces pristinaespiralis in shaking flasks. Biotechnol Bioeng 108(9):2151–2161Google Scholar
  57. 57.
    Mehmood N, Olmos E, Goergen J-L, Blanchard F, Marchal P, Klöckner W, Büchs J, Delaunay S (2012) Decoupling of oxygen transfer and power dissipation for the study of the production of pristinamycins by Sreptomyces pristinaespiralis in shaking flasks. Biochem Eng J 68:25–33Google Scholar
  58. 58.
    Casas López JL, Sánchez Pérez JA, Fernández Sevilla JM, Rodríguez Porcel EM, Chisti Y (2005) Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus. J Biotechnol 116:61–77Google Scholar
  59. 59.
    Rodríguez Porcel EM, Casas López JL, Sánchez Pérez JA, Fernández Sevilla JM, García Sánchez JL, Chisti Y (2006) Aspergillus terreus broth rheology, oxygen transfer, and lovastatin production in gas-aireated slurry reactor. Ind Eng Chem Res 45:4837–4843Google Scholar
  60. 60.
    Xu CP, Kim SW, Hwang HJ, Yun JW (2006) Production of exopolysaccharides by submerged culture of an enthomopathogenic fungus, Paecilomyces tenuipes C240 in stirred-tank and airlift reactors. Bioresource Technol 97:770–777Google Scholar
  61. 61.
    Cho EJ, Oh JY, Chang HY, Yun JW (2006) Production of exopolysaccharides by submerged mycelia culture of a mushroom Tremella fuciformis. J Biotechnol 127:129–140Google Scholar
  62. 62.
    Rogalski J, Szczodrak J, Janusz G (2006) Manganese peroxidase production in submerged cultures by free and immobilized mycelia of Nematoloma frowardii. Bioresource Technol 97:469–476Google Scholar
  63. 63.
    Michelin M, Teixeira de Morales Polizeli ML, Pereira da Silva D, Santos Ruzene D, Vicente AA, Jorge JA, Terenzi HF, Teixeira JA (2011) Production of xylanolytic enzymes by Aspergillus terricola in stirred tank and airlift tower loop bioreactors. J Ind Microbiol Biotechnol 38:1979–1984Google Scholar
  64. 64.
    Cai M, Zhou X, Lu J, Fan J, Niu C, Zhou J, Sun X, Kang L, Zhang Y (2011) Enhancing aspergiolide A production from a shear-sensitive and easy-foaming marine derived filamentous fungus Aspergillus glaucus by oxygen carrier addition and impeller combination in a bioreactor. Bioresource Technol 102:3584–3586Google Scholar
  65. 65.
    Fenice M, Barghini P, Selbmann L, Federici F (2012) Combined effects of agitation and aeration on the chitinolytic enzymes production by the antartic fungus Lecanicillium muscarium CCFEE 5003. Microb Cell Fact 11(12):1–10Google Scholar
  66. 66.
    Jonczyk P, Takenberg M, Hartwig S, Beutel S, Berger RG, Scheper T (2013) Cultivation of shear stress sensitive microorganisms in disposable bag reactor system. J Biotechnol 167:370–376Google Scholar
  67. 67.
    Tramper J, van’t Riet K. (1991). Basic bioreactor design. Marcel Dekker Inc., New York, pp 136–180Google Scholar
  68. 68.
    Joshi J, Elias C, Patole M (1996) Role of hydrodynamic shear in the cultivation of animal, plant and microbial cells. Biochem Eng J 62:121–141Google Scholar
  69. 69.
    Croughan MS, Hamel JF, Wang DIC (1987) Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotechnol Bioeng 29:130–141Google Scholar
  70. 70.
    Ayazi-Shamlou P, Makagiansar HY, Ison AP, Lilly MD, Thomas CR (1994) Turbulent breakage of filamentous microorganisms in submerged culture in mechanically stirred bioreactors. Chem Eng Sci 49:2621–2631Google Scholar
  71. 71.
    Thomas CR, Zhang Z (1998) The effect of hydrodynamics on biological materials. In: Galindo E, y Ramírez OT (eds) Advances in Bioprocess Engineering II. Kluwer Academic Publishers, Berlin, pp 137–170Google Scholar
  72. 72.
    Li ZJ, Shukla V, Wenger K, Fordyce A, Pedersen AG, Marten M (2002) Estimation of hyphal tensile strength in production-scale Aspergillus oryzae fungal fermentations. Biotechnol Bioeng 77:601–613Google Scholar
  73. 73.
    Rocha-Valadez JA, Galindo E, Serrano-Carreón L (2007) The influence of circulation frequency on fungal morphology: a case study considering Kolmogorov microscale in constant specific energy dissipation rate cultures of Trichoderma harzianum. J Biotechnol 130:394–401Google Scholar
  74. 74.
    Zhang Z, Al-Rubeai M, Thomas CR (1993) Estimation of disruption of animal cells by turbulent capillary flow. Biotechnol Bioeng 42:987–993Google Scholar
  75. 75.
    Kelly S, Grimm LH, Bendig C, Hampel DC, Krull R (2006) Effects of fluid dynamic induced shear stress on fungal growth and morphology. Process Biochem 41:2113–2117Google Scholar
  76. 76.
    Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluids for very large Reynolds numbers. Dokl Akad Nauk SSSR 30. Proc R Soc Lond A [trans: Levin V (1991)] 434:9–13Google Scholar
  77. 77.
    Cui YQ, van der Lans RGJM, Luyben KCAM (1997) Effect of agitation intensities on fungal morphology of submerged fermentation. Biotechnol Bioeng, 55:715–726Google Scholar
  78. 78.
    Li ZJ, Bhargava S, Marten MR (2002) Measurements of the fragmentation rate constant imply that the tensile strength of fungal hyphae can change significantly during growth. Biotechnol Lett 24:1–7Google Scholar
  79. 79.
    van Suijdam JC, Metz B (1981) Influence of engineering variables upon the morphology of filamentous molds. Biotechnol Bioeng 23:111–148Google Scholar
  80. 80.
    Nienow AW, Ulbrecht JJ (1985) Gas-liquid mixing and mass transfer in high viscosity liquids. In: Ulbrecht JJ, Patterson GE (eds) Mixing of liquids by mechanical agitation. Gordons and Breach, New York, pp 203–235Google Scholar
  81. 81.
    Large KP, Ison AP, Williams DJ (1998) The effect of agitation rate on lipid utilization and clavulanic acid production in Streptomyces clavuligerus. J Biotechnol 63:111–119Google Scholar
  82. 82.
    Amanullah A, Blair R, Nienow AW, Thomas CR (1999) Effects of agitation intensity on mycelial morphology and protein production in chemostat cultures of recombinant Aspergillus oryzae. Biotechnol Bioeng 62:434–446Google Scholar
  83. 83.
    Papagianni M, Mattey M, Kristiansen B (1999) Hyphal vacuolation and fragmentation in batch and fed-batch culture of Aspergillus niger and its relation to citric acid production. Process Biochem 35:359–366Google Scholar
  84. 84.
    Johansen CL, Coolen L, Hunik JH (1998) Influence of morphology on product formation in Aspergillus awamori during submerged fermentations. Biotechnol Prog 14:233–240Google Scholar
  85. 85.
    Paul GC, Priede MA, Thomas CR (1999) Relationship between morphology and citric acid production in submerged Aspergillus niger fermentations. Biochem Eng J 3:121–129Google Scholar
  86. 86.
    Tang Y-J, Zhang W, Liu R-S, Zhu L-W, Zhong J-J (2011) Scale-up study on the fed batch fermentation of Ganoderma lucidum for the hyperproduction of ganoderic acid and Ganoderma polysaccharides. Process Biochem 46:404–408Google Scholar
  87. 87.
    Charles M (1985) Fermentation design and scale-up. In: Moo-Young M (ed) Comprehensive Biotechnology, vol 2. Pergamon Press, Oxford, pp 120–150Google Scholar
  88. 88.
    Gamboa-Suasnavart RA, Marín-Palacio LD, Martínez-Sotelo JA, Espitia C, Servín-González L, Valdez-Cruz NA, Trujillo-Roldán MA (2013) Scale-up from shake flasks to bioreactor, based on power input and Streptomyces lividans morphology, for the production of recombinant APA (45/47 kDa protein) from Mycobacterium tuberculosis. World J Microbiol Biotechnol 29:1421–1429Google Scholar
  89. 89.
    Jüsten P, Paul G, Nienow AW, Thomas C (1998) Dependence of Penicillium chrysogenum growth, morphology, vacuolation, and productivity in fed-batch fermentations on impeller type and agitation intensity. Biotechnol Bioeng 59:762–775Google Scholar
  90. 90.
    Amanullah A, Christensen LH, Hansen K, Nienow AW, Thomas CR (2002) Dependence of morphology on agitation intensity in fed-batch cultures of Aspergillus oryzae and its implications for recombinant protein production. Biotechnol Bioeng 77:815–826Google Scholar
  91. 91.
    Jüsten P, Paul GC, Nienow AW, Thomas CR (1996) Dependence of mycelial morphology on impeller type and agitation intensity. Biotechnol Bioeng 52:672–684Google Scholar
  92. 92.
    Marín-Palacio LD, Gamboa-Suasnavart RA, Valdéz-Cruz NA, Servín-González L, Córdova-Aguilar MS, Soto E, Klöckner W, Büchs J, Trujillo Roldán MA (2014) The role of volumetric power input in the growth, morphology, and production of a recombinant glycoprotein by Streptomyces lividans in shake flasks. Biochemical Eng J 90: 224–233Google Scholar
  93. 93.
    Reuss M (1988) Influence of mechanical stress on the growth of Rhizopus nigricans in stirred bioreactors. Chem Eng Technol 11:178–187Google Scholar
  94. 94.
    Zou X, Xia J, Chu J, Zhuang Y, Zhang S (2012) Real-time fluid dynamics investigation and physiological response for erythromycin fermentation scale-up from 50 L to 132 m3 fermenter. Bioprocess Biosyst Eng 35:789–800Google Scholar
  95. 95.
    Kaup B-A, Ehrich K, Pescheck M, Schrader J (2007) Microparticle-enhanced cultivation of filamentous microorganisms: increased chloroperoxidase formation by Caldariomyces fumago as an example. Biotechnol Bioeng 99(3):491–498Google Scholar
  96. 96.
    Driouch H, Roth A, Dersch P, Wittmann C (2010) Optimized bioprocess for production of fructofuranosidase by recombinant Aspergillus niger. Appl Microbiol Biotechnol 87:2011–2024Google Scholar
  97. 97.
    Driouch H, Sommer B, Wittmann C (2010) Morphology engineering of Aspergillus niger for improved enzyme production. Biotechnol Bioeng 105:68–1058Google Scholar
  98. 98.
    Walisko R, Krull R, Schrader J, Wittmann C (2012) Microparticle based morphology engineering of filamentous microorganisms for industrial bio-production. Biotechnol Lett 34:1975–1982Google Scholar
  99. 99.
    Driouch H, Roth A, Dersch P, Wittmann C (2011) Filamentous fungi in good shape. Microparticles for tailor-made fungal morphology and enzyme production. Bioeng Bugs 2:2, 100–104Google Scholar
  100. 100.
    Krull R, Wucherpfennig T, Esfandabadi ME, Walisko R, Melzer G, Hempel DC, Kampen I, Kwade A, Wittmann C (2013) Characterization and control of fungal morphology for improved production performance in biotechnology. J Biotechnol 163:112–123Google Scholar
  101. 101.
    Sohoni SV, Bapat PM, Lantz AE (2012) Rubust, small-scale cultivation platform for Streptomyces coelicolor. Microb Cell Fact 11(9):1–10Google Scholar
  102. 102.
    Gao D, Zeng J, Yu X, Dong T, Chen S (2014) Improved lipid accumulation by morphology engineering of oleaginous fungus Mortierella isabellina. Biotechnol Bioeng 111(9):1758–1766Google Scholar
  103. 103.
    Etschmann MMW, Huth I, Walisko R, Schuster J, Krull R, Holtmann D, Wittmann C, Schrader J (2014) Improving 2-phenylethanol and 6-pentyl-α-pyrone production with fungi by microparticle-enhanced cultivation (MPEC). Yeast. Published online 9 Jul 2014. doi: 10.1002/yea.3022 Google Scholar
  104. 104.
    Mukataka S, Kobayashi N, Sato S, Takahashi J (1988) Variation in cellulase-constituting components from Trichoderma reesei with agitation intensity. Biotechnol Bioeng 32:760–763Google Scholar
  105. 105.
    Lejeune R, Baron GV (1995) Effect of agitation on growth and enzyme production of Trichoderma reesei in batch fermentation. Appl Microbiol Biotechnol 43:249–258Google Scholar
  106. 106.
    Apsite A, Viesturs U, Steinberga A, Toma M (1998) Morphology and antifungal action of the genus Trichoderma cultivated in geometrically dissimilar bioreactors. World J Microbiol Biotechnol 14:23–29Google Scholar
  107. 107.
    Serrano-Carreón L, Flores C, Galindo E (1997) γ-Decalactone production by Trichoderma harzianum in stirred bioreactors. Biotechnol Prog 13:205–208Google Scholar
  108. 108.
    Serrano-Carreón L, Flores C, Rodríguez B, Galindo E (2004) Rhizoctonia solani, an elicitor of 6-pentyl-α-pyrone production by Trichoderma harzianum in a two liquid phases, extractive fermentation system. Biotechnol Lett 26:1403–1406Google Scholar
  109. 109.
    Hjeljord L, Tronsmo A (1998) Trichoderma and Gliocladium in biological control: an overview. In: Harman E, Kubicek CP (eds) Trichoderma and Gliocladium, vol 2. Taylor and Francis, London, pp 131–151Google Scholar
  110. 110.
    Marten MR, Velkovska S, Khan SA, Ollis DF (1996) Rheological, mass transfer, and mixing characterization of cellulase-producing Trichoderma reseei suspensions. Biotechnol Prog 12:602–611Google Scholar
  111. 111.
    Felse PA, Panda T (2000) Submerged culture production of chitinase by Trichoderma harzianum in stirred tank bioreactors-the influence of agitator speed. Biochem Eng J 4:115–120Google Scholar
  112. 112.
    Godoy-Silva RD, Serrano-Carreón L, Ascanio G, Galindo E (1997) Effect of impeller geometry on the production of aroma compounds by Trichoderma harzianum. In: Nienow AW (ed) Proceedings of 4th International Conference on Bioreactor and Bioprocess Fluid Dynamics. BHR Group, Bedford, pp 61–72Google Scholar
  113. 113.
    Galindo E, Flores C, Larralde-Corona P, Corkidi G, Rocha-Valadez JA, Serrano-Carreón L (2004) Production of 6-pentyl-α-pyrone by Trichoderma harzianum cultured in unbaffled and baffled shake flasks. Biochem Eng J 18:1–8Google Scholar
  114. 114.
    Rocha-Valadez JA, Hassan M, Corkidi G, Flores C, Galindo E, Serrano-Carreón L (2005) 6-pentyl-α-pyrone production by Trichoderma harzianum: the influence of energy dissipation rate and its implications on fungal physiology. Biotechnol Bioeng 91:54–61Google Scholar
  115. 115.
    Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30:215–242Google Scholar
  116. 116.
    De Souza C, Tychanowics G, De Souza D, Peralta R (2004) Production of laccase isoforms by Pleurotus pulmonarius in response to presence of phenolic and aromatic compounds. J Basic Microbiol 44:129–136Google Scholar
  117. 117.
    Soden DM, Dobson ADW (2001) Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology-Sgm 147:1755–1763Google Scholar
  118. 118.
    Muñoz C, Guillén F, MartÍnez AT (1997) Induction and characterization of laccases in the ligninolytic fungus Pleurotus eryngii. Curr Microbiol 34:1–5Google Scholar
  119. 119.
    Ueda M, Shintani K, Nakanishi-Anjyuin A, Nakazawa M, Kusuda M, Nakatani F, Kawaguchi T, Tsujiyama S, Kawanishi M, Yagi T, Miyatake K (2012) A proteina from Pleurotus eryngii var. tuoliensis C.J. Mou with strong removal activity against the natural steroid hormone, estriol: purification, characterization, and identification as a laccase. Enzyme Microb Technol 51(6–7):402–407Google Scholar
  120. 120.
    Giardina P, Palmieri G, Scaloni A, Fontanella B, Faraco V, Cennamo G, Sannia G (1999) Protein and gene structure of a blue laccase from Pleurotus ostreatus. Biochem J 341:655–663Google Scholar
  121. 121.
    Lettera V, Del Vecchio C, Piscitelli A, Sannia G (2011) Low impact strategies to improve ligninolytic enzyme production in filamentous fungi: the case of laccase in Pleurotus ostreatus. C R Biol 11:781–788Google Scholar
  122. 122.
    Piscitelli A, Giardina P, Lettera V, Pezzella C, Sannia G, Faraco V (2011) Induction and transcriptional production of laccases in fungi. Current Genomics 12:104–112Google Scholar
  123. 123.
    Rodríguez Couto S, Toca Herrera JL (2007) Laccase production at reactor scale by filamentous fungi. Biotechnol Adv 25:558–569Google Scholar
  124. 124.
    Galhaup CD, Wagner H, Hinterstoisser B, Haltrich D (2002) Increased production of laccase by the wood-degrading basidiomycete Trametes pubescens. Enz Microb Technol 30:529–536Google Scholar
  125. 125.
    Hess J, Leitner C, Galhaup C, Kulbe KD, Hinterstoisser B, Steinwender M (2002) Enhanced formation of extracellular laccase activity by the white-rot fungus Trametes multicolor. Appl Biochem Biotechnol 98:229–241Google Scholar
  126. 126.
    Fenice M, Sermanni GG, Federici F, D’Annibale A (2003) Submerged and solid-state production of laccase and Mn-peroxidase by Panus tigrinus on olive mill wastewater-based media. J Biotechnol 100:77–85Google Scholar
  127. 127.
    Silvério SC, Moreira S, Milagres AMF, Macedo EA, Teixeira JA, Mussatto SI (2013) Laccase production by free and immobilized mycelia of Peniophora cinérea and Trametes versicolor: a comparative study. Bioprocess Biosyst Eng 36:365–373Google Scholar
  128. 128.
    Tavares APM, Coelho MAZ, Agapito MSM, Coutinho JAP, Xavier AMRB (2006) Optimization and modeling of laccase production by Trametes versicolor in a bioreactor using statistical experimental design. Appl Biochem Biotechnol 134:233–248Google Scholar
  129. 129.
    Babic J, Pavko A (2011) Enhanced enzyme production with the pelleted form of D. squalens in laboratory bioreactors using added natural lignin inducer. J Ind Microbiol Biotechnol 39:449–457Google Scholar
  130. 130.
    Birhanli E, Yesilada O (2010) Enhanced production of laccase in repeated-batch cultures of Funalia trogii and Trametes versicolor. Biochem Eng J 52:33–37Google Scholar
  131. 131.
    Tinoco-Valencia R, Gómez-Cruz C, Galindo E, Serrano-Carreón L (2014) Toward an understanding of the effects of agitation and aeration on growth and laccases production by Pleurotus ostreatus. J Biotechnol 177:67–73Google Scholar
  132. 132.
    Jolicoeur M, Williams RD, Chavarie C, Fortin JA, Archambault J (1999) Production of Glomus intraradices propagules, an arbuscular mycorrhizal fungus, in an airlift bioreactor. Biotechnol Bioeng 63:224–232Google Scholar
  133. 133.
    Muñoz GA, Agosin E, Cotoras M, Martin RS, Volpe D (1995) Comparison of aerial and submerged spore properties for Trichoderma harzianum. FEMS Microbiol Lett 125:63–70Google Scholar
  134. 134.
    Vanhoutte B, Pons MN, Thomas CR, Louvel L, Vivier H (1995) Characterization of Penicillium chrysogenum physiology in submerged cultures by color and monochrome image analysis. Biotechnol Bioeng 48:1–11Google Scholar
  135. 135.
    Drouin JF, Louvel L, Vanhoutte B, Vivier H, Pons MN, Germain P (1997) Quantitative characterization of cellular differentiation of Streptomyces ambofaciens in submerged culture by image analysis. Biotechnol Tech 11:819–824Google Scholar
  136. 136.
    Reichl U, Yang H, Gilles ED, Wolf H (1990) New improved method for measuring the interseptal spacing in hyphae of Streptomyces tendae by fluosescence microscopy coupled with image processing. FEMS Microbiol Lett 67:207–210Google Scholar
  137. 137.
    Paul GC, Kent CA, Thomas CR (1992) Viability testing and characterization of germination of fungal spores by automatic image analysis. Biotechnol Bioeng 42:11–23Google Scholar
  138. 138.
    Sebastine IM, Stocks SM, Cox PW, Thomas CR (1999) Characterisation of percentage viability of Streptomyces clavuligerus using image analysis. Biotechnol Techniques 13:419–423Google Scholar
  139. 139.
    Hassan M, Corkidi G, Galindo E, Flores C, Serrano-Carreón L (2002) Accurate and rapid viability assessment of Trichoderma harzianum using fluorescence-based digital image analysis. Biotechnol Bioeng 80(6):677–684Google Scholar
  140. 140.
    Pinto LS, Vieira LM, Pons MN, Fonseca MMR, Menezes JC (2004) Morphology and viability analysis of Streptomyces clavuligerus in industrial cultivation systems. Bioprocess Biosyst Eng 26:177–184Google Scholar
  141. 141.
    Wei N, You J, Friehs K, Flschel E, Nattkemper TW (2007) An in situ probe for on-line monitoring of cell density and viability on the basis of dark field microscopy in conjunction with image processing and supervised machine learning. Biotechol Bioeng 97(6):1489–1500Google Scholar
  142. 142.
    Lecault V, Patel N, Thibault J (2007) Morphological characterization and viability assessment of Trichoderma reesei by image analysis. Biotechnol Prog 23:734–740Google Scholar
  143. 143.
    Choy V, Patel N, Thibault J (2011) Application of image analysis in the fungal fermentation of Trichoderma reesei RUT-C30. Biotechnol Prog 27(6):1544–1553Google Scholar
  144. 144.
    Zhu H, Sun J, Tian B, Wang H (2014) A novel stirrer design and its application in submerged fermentation of the edible fungus Pleurotus ostreatus. Bioprocess Biosyst Eng. Published online: 19 Sept 2014. doi:  10.1007/s00449-014-1290-6
  145. 145.
    Zou X, Xia JX, chu J, Zhuang Y, Zhang S (2012) Real-time fluid dynamics investigation and physiological response for erythromycin fermentation scale-up from 50 L to 132 m3 fermenter. Bioprocess Biosyst Eng 35:789–800Google Scholar
  146. 146.
    Núñez-Ramírez DM, Valencia-López JJ, Calderas F, Solís-Soto A, López-Miranda J, Medrano-Roldán H, Medina-Torres L (2012) Mixing analysis for a fermentation broth of the fungus Beauveria bassiana under different hydrodynamic conditions in a bioreactor. Chem Eng Technol 35(11):1954–1961Google Scholar
  147. 147.
    Liu R, Sun W, Liu C-Z (2011) Computational fluid dynamics modeling of mass-transfer behavior in a bioreactor for hairy root culture. II. Analysis of ultrasound-intensified process. Biotechnol Prog 27(6):1672–1679Google Scholar
  148. 148.
    Formenti LR, Nørregaard A, Bolic A, Quintanilla Hernandez D, Hagemann T, Heins A-L, Larsson H, Mears L, Mauricio-Iglesias M, Krühne U, Gernaey KV (2014) Challenges in industrial fermentation technology research. Biotechnol J 9:727–738Google Scholar
  149. 149.
    Galaction A-I, Cascaval D, Oniscu C, Turnea M (2004) Prediction of oxygen mass transfer coefficients in stirred bioreactors for bacteria, yeasts and fungus broths. Biochem Eng J 20:85–94Google Scholar
  150. 150.
    Galaction A-I, Cascaval D, Oniscu C, Turnea M (2005) Evaluation and modeling of the aerobic stirred bioreactor performances for fungus broths. Chem Biochem Eng Q 19(1):87–97Google Scholar
  151. 151.
    Mishra P, Srivastava P, Kundu S (2005) A competitive evaluation of oxygen mass transfer and broth viscosity using Cephalosporin-C production as case strategy. World J Microbiol Biotechnol 21:525–530Google Scholar
  152. 152.
    Singh D, Kaur G (2014) Swainsonine, a novel fungal metabolite: optimization of fermentative production and bioreactor operations using evolutionary programming. Bioprocess Biosyst Eng 37:1599–1607Google Scholar
  153. 153.
    Galindo E, Pacek AW, Nienow AW (2000) Study of drop and bubble sizes in a simulated mycelial fermentation broth of up to four phases. Biotechnol Bioeng 69:213–221Google Scholar
  154. 154.
    Quijano G, Revah S, Gutiérrez-Rojas M, Flores-Cotera LB, Thalasso F (2009) Oxygen transfer in three-phase airlift and stirred tank reactors using silicone oil as transfer vector. Process Biochem 44:619–624.Google Scholar
  155. 155.
    Serrano-Carreón L, Balderas-Ruíz K, Galindo E, Rito-Palomares M (2002) Production and biotransformation of 6-pentyl-α-pyrone by Trichoderma harzianum in two-phase culture systems. Appl Microbiol Biotechnol 58:170–174Google Scholar
  156. 156.
    Kalyani A, Prapulla SG, Karanth NG (2000) Study on the production of 6-pentyl-α-pyrone using two methods of fermentation. Appl Microbiol Biotechnol 53:610–612Google Scholar
  157. 157.
    Lucatero S, Larralde-Corona CP, Corkidi G, Galindo E (2003) Oil and air dispersion in a simulated fermentation broth as a function of mycelial morphology. Biotechnol Prog 19(2):285–292Google Scholar
  158. 158.
    Corkidi G, Rojas A, Pimentel A, Galindo E (2012) Visualization of compound drop formation in multiphase processes for dentification of factors influencing bubble and water droplet inclusions in oil drops. Chem Eng Res Design 90:1727–1738Google Scholar
  159. 159.
    Pulido-Mayoral N, Galindo E (2004) Phases dispersion and oxygen transfer in a simulated fermentation broth containing castor oil and proteins. Biotechnol Progress 20:1608–1613Google Scholar
  160. 160.
    Córdova-Aguilar MS, Sánchez A, Serrano-Carreón L, Galindo E (2001) Oil and fungal biomass dispersion in a stirred tank containing a simulated fermentation broth. J Chem Technol Biotechnol 76(11):1101–1106Google Scholar
  161. 161.
    Bouaifi M, Hebrard G, Bastoul D, Roustan M (2001) A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas-liquid reactors and bubble columns. Chem Eng Process 40:97–111Google Scholar
  162. 162.
    Alves SS, Maia CI, Vasconcelos JMT, Serralheiro AJ (2002) Bubble size in aerated stirred tanks. Chem Eng J 89:109–117Google Scholar
  163. 163.
    Laakkonen M, Moilanen P, Alopaeus V, Aittamaa J (2007) Modelling local bubble size distributions in agitated vessels. Chem Eng Sci 62:721–740Google Scholar
  164. 164.
    Montante G, Horn D, Paglianti A (2008) Gas-liquid flow and bubble size distribution in stirred tanks. Chem Eng Sci 63:2107–2118Google Scholar
  165. 165.
    Pacek AW, Man CC, Nienow AW (1998) On the Sauter mean diameter and size distributions in turbulent liquid/liquid dispersions in a stirred vessel. Chem Eng Sci 53:2005–2011Google Scholar
  166. 166.
    Raman AAA, Abidin MIIA, Nor MIM (2013) Review on measurement techniques for drop size distribution in a stirred vessel. Ind Eng Chem Res 52:16085–16094Google Scholar
  167. 167.
    Maaß S, Rojahn J, Hänsch R, Kraume M (2012) Automated drop detection using image analysis for online particle size monitoring in multiphase systems. Comput Chem Eng 45:27–37Google Scholar
  168. 168.
    Laakkonen M, Moilanen P, Miettinen T, Saari K, Honkanen M, Saarenrinne P, Aittamaa J (2005) Local bubble size distributions in agitated vessel. Comparison of three experimental techniques. Chem Eng Res Design 83(A1):50–58Google Scholar
  169. 169.
    Junker B, Maciejak W, Darnell B, Lester M, Pollack M (2007) Feasibility of an in situ measurement device for bubble size and distribution. Bioprocess Biosyst Eng 30:313–326Google Scholar
  170. 170.
    Alban FB, Sajjadi S, Yianneskis M (2004) Dynamic tracking of fast liquid-liquid dispersions processes with a real-time in-situ optical technique. Chem Eng Res Design 82(A8):1054–1060Google Scholar
  171. 171.
    Zabulis X, Papara M, Chatziargyriou A, Karapantsios TD (2007) Detection of densely dispersed spherical bubbles in digital images based on a template matching technique. Application to wet foams. Colloids Surf A: Physicochem Eng Aspects 309:96–106Google Scholar
  172. 172.
    Brás LMR, Gomes EF, Ribeiro MMM, Guimaraes MML (2009) Drop distribution determination in a liquid–liquid dispersion by image processing. Int J Chem Eng 1–6. Article ID: 746439:1–6Google Scholar
  173. 173.
    Khalil A, Puel F, Chevalier Y, Galvan J-M, Rivoire A, Klein J-P (2010) Study of droplet size distribution during an emulsification process using in situ video probe coupled with an automatic image analysis. Chem Eng J 165:946–957Google Scholar
  174. 174.
    Maaß S, Wollny S, Voigt A, Kraume M (2011) Experimental comparison of measurement techniques for drop size distributions in liquid/liquid dispersions. Exp Fluids 50:259–269Google Scholar
  175. 175.
    Nataliya S, Matas J, Eerola T, Lensu L, Kälviäinen H (2012) Detection of bubbles as concentric circular arrangements. In: Proceedings of 21st International Conference on Pattern Recognition (ICPR 2012), Tsukuba, Japan, pp 2655–2659, 11–15 Nov 2012Google Scholar
  176. 176.
    Rojas-Domínguez A, Holguín Salas A, Galindo E, Corkidi G (2015) Gradient-detection-pattern transform—application to automated measurement of oil drops in images of multiphase dispersions. Chem Eng Technol 38(00):1–10Google Scholar
  177. 177.
    Taboada B, Vega-Alvarado L, Córdova-Aguilar MS, Galindo E, Corkidi G (2006) Semi-automatic image analysis methodology for the segmentation of bubbles and drops in complex dispersions occurring in bioreactors. Exp Fluids 41(3):383–392Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Departamento de Ingeniería Celular y Biocatálisis, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMéxico

Personalised recommendations