Application of Biofilm Bioreactors in White Biotechnology

  • K. Muffler
  • M. Lakatos
  • C. Schlegel
  • D. Strieth
  • S. Kuhne
  • R. UlberEmail author
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 146)


The production of valuable compounds in industrial biotechnology is commonly done by cultivation of suspended cells or use of (immobilized) enzymes rather than using microorganisms in an immobilized state. Within the field of wastewater as well as odor treatment the application of immobilized cells is a proven technique. The cells are entrapped in a matrix of extracellular polymeric compounds produced by themselves. The surface-associated agglomerate of encapsulated cells is termed biofilm. In comparison to common immobilization techniques, toxic effects of compounds used for cell entrapment may be neglected. Although the economic impact of biofilm processes used for the production of valuable compounds is negligible, many prospective approaches were examined in the laboratory and on a pilot scale. This review gives an overview of biofilm reactors applied to the production of valuable compounds. Moreover, the characteristics of the utilized materials are discussed with respect to support of surface-attached microbial growth.


Biofilm Biofilm engineering Biofilm reactor Bulk and fine chemicals Catalysis Industrial production Productive biofilms 



We wish to thank the German Research Foundation (DFG) for funding under LA 1426/9-1, UL 170/7-1, and SFB 926/1-2013.


  1. 1.
    Warnock JN, Al-Rubeai M (2006) Bioreactor systems for the production of biopharmaceuticals from animal cells. Biotechnol Appl Biochem 45:1–12. doi: 10.1042/ba2005023 CrossRefGoogle Scholar
  2. 2.
    Harding MW, Marques LLR, Howard RJ et al (2009) Can filamentous fungi form biofilms? Trends Microbiol 17(11):475–480. doi: 10.1016/j.tim.2009.08.007 CrossRefGoogle Scholar
  3. 3.
    Fukuda H (1995) Immobilized microorganism bioreactors. In: Asenjo JA, Merchuk JC (eds) Bioreactor system design. Marcel Dekker Inc, New York, pp 339–375Google Scholar
  4. 4.
    Gross R, Schmid A, Buehler K (2012) Catalytic biofilms: a powerful concept for future bioprocesses. In: Lear G, Lewis GD (eds) Microbial biofilms. Caister Academic Press, Norfolk, pp 193–222Google Scholar
  5. 5.
    Kobayashi M, Shimizu S (2000) Nitrile hydrolases. Curr Opin Chem Biol 4(1):95–102. doi: 10.1016/s1367-5931(99)00058-7 CrossRefGoogle Scholar
  6. 6.
    Murphy CD (2012) The microbial cell factory. Org Biomol Chem 10(10):1949–1957. doi: 10.1039/c2ob06903b CrossRefGoogle Scholar
  7. 7.
    Crueger W, Crueger A, Brock TD (1990) Biotechnology. A textbook of industrial microbiology, 2nd edn. Sinauer Associates, SunderlandGoogle Scholar
  8. 8.
    Kersters K, Lisdiyanti P, Komagata K et al (2006) The family Acetobacteracea: the genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia. In: Dworkin M (ed) Prokaryotes, vol 5. Springer Science + Business Media, New York, pp 163–200CrossRefGoogle Scholar
  9. 9.
    Li XZ, Hauer B, Rosche B (2007) Single-species microbial biofilm screening for industrial applications. Appl Microbiol Biotechnol 76(6):1255–1262. doi: 10.1007/s00253-007-1108-4 CrossRefGoogle Scholar
  10. 10.
    Cronenberg CCH, Ottengraf SPP, Vandenheuvel JC et al (1994) Influence of age and structure of penicillium chrysogenum pellets on the internal concentration profiles. Bioprocess Eng 10(5–6):209–216. doi: 10.1007/bf00369531 CrossRefGoogle Scholar
  11. 11.
    Hooijmans CM, Briasco CA, Huang J et al (1990) Measurement of oxygen concentration gradients in gel-immobilized recombinant Escherichia coli. Appl Microbiol Biotechnol 33(6):611–618CrossRefGoogle Scholar
  12. 12.
    Tijhuis L, van Loosdrecht MCM, Heijnen JJ (1994) Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors. Biotechnol Bioeng 44(5):595–608. doi: 10.1002/bit.260440506 CrossRefGoogle Scholar
  13. 13.
    Demirci A, Pongtharangkul T, Pometto AL (2007) Application of biofilm reactors for production of value-added products by microbial fermentation. In: Blaschek HP, Wang HH, Agle ME (eds) Biofilms in the food environment. Blackwell Publishing Ltd., Oxford, pp 167–189Google Scholar
  14. 14.
    Gross R, Lang K, Buhler K et al (2010) Characterization of a biofilm membrane reactor and its prospects for fine chemical synthesis. Biotechnol Bioeng 105(4):705–717. doi: 10.1002/bit.22584 Google Scholar
  15. 15.
    Atkinson B, Black GM, Lewis PJS et al (1979) Biological particles of given size, shape, and density for use in biological reactors. Biotechnol Bioeng 21(2):193–200. doi: 10.1002/bit.260210206 CrossRefGoogle Scholar
  16. 16.
    Karsakevich A, Ventina E, Vina I et al (1998) The effect of chemical treatment of stainless steel wire surfaces on Zymomonas mobilis cell attachment and product synthesis. Acta Biotechnol 18(3):255–265. doi: 10.1002/abio.370180310 CrossRefGoogle Scholar
  17. 17.
    Schwartz T, Hoffmann S, Obst U (2003) Formation of natural biofilms during chlorine dioxide and u.v. disinfection in a public drinking water distribution system. J Appl Microbiol 95(3):591–601. doi: 10.1046/j.1365-2672.2003.02019.x CrossRefGoogle Scholar
  18. 18.
    Qureshi N, Paterson AHJ, Maddox IS (1988) Model for continuous production of solvents from whey permeate in a packed-bed reactor using cells of Clostridium acetobutylicum immobilized by adsorption onto bonechar. Appl Microbiol Biotechnol 29(4):323–328CrossRefGoogle Scholar
  19. 19.
    Qureshi N, Annous BA, Ezeji TC et al (2005) Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb Cell Fact 4:21. doi: 10.1186/1475-2859-4-24 CrossRefGoogle Scholar
  20. 20.
    Jördening HJ (1992) Anaerobic biofilms in fluidized bed reactors. In: Melo LF, Bott TR, Fletcher M et al (eds) Biofilms—science and technology. Kluwer Academic Publishers, Dordrecht, pp 435–442Google Scholar
  21. 21.
    Sohling U, Ruf F, Neitmann E, Linke B (2010) Magnetische Glaspartikel zum Einsatz in Biogasanlagen, Fermentations- und Separationsprozessen(DE102010034083A1)Google Scholar
  22. 22.
    Lienhardt J, Schripsema J, Qureshi N et al (2002) Butanol production by Clostridium beijerinckii BA101 in an immobilized cell biofilm reactor—increase in sugar utilization. Appl Biochem Biotech 98:591–598. doi: 10.1385/abab:98-100:1-9:591 CrossRefGoogle Scholar
  23. 23.
    Urek RO, Pazarlioglu NK (2004) A novel carrier for Phanerochaete chrysosporium immobilization. Artif Cell Blood Sub 32(4):563–574. doi: 10.1081/labb-200039618 CrossRefGoogle Scholar
  24. 24.
    Asther M, Bellonfontaine MN, Capdevila C et al (1990) A thermodynamic model to predict Phanerochaete chrysosporium INA-12 adhesion to various solid carriers in relation to lignin peroxidase production. Biotechnol Bioeng 35(5):477–482. doi: 10.1002/bit.260350505 CrossRefGoogle Scholar
  25. 25.
    Jones SC, Briedis DM (1992) Adhesion and lignin peroxidase production by the white-rot fungus Phanerochaete chrysosporium in a rotating biological contactor. J Biotechnol 24(3):277–290. doi: 10.1016/0168-1656(92)90037-a CrossRefGoogle Scholar
  26. 26.
    Guimarães C, Matos C, Azeredo J et al (2002) The importance of the morphology and hydrophobicity of different carriers on the immobilization and sugar refinery effluent degradation activity of Phanerochaete chrysosporium. Biotechnol Lett 24(10):795–800. doi: 10.1023/a:1015580322450 CrossRefGoogle Scholar
  27. 27.
    Zhang SP, Norrlow O, Wawrzynczyk J et al (2004) Poly(3-hydroxybutyrate) biosynthesis in the biofilm of Alcaligenes eutrophus, using glucose enzymatically released from pulp fiber sludge. Appl Environ Microb 70(11):6776–6782. doi: 10.1128/aem.70.11.6776- 6782.2004CrossRefGoogle Scholar
  28. 28.
    Cotton JC, Pometto AL, Gvozdenovic-Jeremic J (2001) Continuous lactic acid fermentation using a plastic composite support biofilm reactor. Appl Microbiol Biotechnol 57(5–6): 626–630Google Scholar
  29. 29.
    Cheng KC, Demirci A, Catchmark JM (2010) Advances in biofilm reactors for production of value-added products. Appl Microbiol Biotechnol 87(2):445–456. doi: 10.1007/s00253-010-2622-3 CrossRefGoogle Scholar
  30. 30.
    Park CH, Okos MR, Wankat PC (1989) Acetone-butanol-ethanol (ABE) fermentation in an immobilized cell trickle bed reactor. Biotechnol Bioeng 34(1):18–29. doi: 10.1002/bit.260340104 CrossRefGoogle Scholar
  31. 31.
    Li XZ, Hauer B, Rosche B (2013) Catalytic biofilms on structured packing for the production of glycolic acid. J Microbiol Biotechnol 23(2):195–204. doi: 10.4014/jmb.1207.07057 CrossRefGoogle Scholar
  32. 32.
    Gjaltema A, Vinke JL, van Loosdrecht MCM et al (1997) Abrasion of suspended biofilm pellets in airlift reactors: Importance of shape, structure, and particle concentrations. Biotechnol Bioeng 53(1):88–99. doi: 10.1002/(sici)1097-0290(19970105)53:1<88:aid-bit12>;2-5 CrossRefGoogle Scholar
  33. 33.
    Weusterbotz D, Aivasidis A, Wandrey C (1993) Continuous ethanol production by Zymomonas mobilis in a fluidized-bed reactor. Part II: Process development for the fermentation of hydrolysed B-starch without sterilization. Appl Microbiol Biotechnol 39(6):685–690CrossRefGoogle Scholar
  34. 34.
    Barros AR, de Amorim ELC, Reis CM et al (2010) Biohydrogen production in anaerobic fluidized bed reactors: effect of support material and hydraulic retention time. Int J Hydrogen Energy 35(8):3379–3388. doi: 10.1016/j.ijhydene.2010.01.108 CrossRefGoogle Scholar
  35. 35.
    Webb C, Fukuda H, Atkinson B (1986) The production of cellulase in a spouted bed fermenter using cells immobilized in biomass support particles. Biotechnol Bioeng 28(1):41–50. doi: 10.1002/bit.260280107 CrossRefGoogle Scholar
  36. 36.
    Converti A, de Faveri D, Perego P et al (2006) Investigation on the transient conditions of a rotating biological contactor for bioethanol production. Chem Biochem Eng Q 20(4):401–406Google Scholar
  37. 37.
    Cao NJ, Du JX, Chen CS et al (1997) Production of fumaric acid by immobilized Rhizopus using rotary biofilm contactor. Appl Biochem Biotech 63–5:387–394. doi: 10.1007/bf02920440 CrossRefGoogle Scholar
  38. 38.
    Delborghi M, Converti A, Parisi F et al (1985) Continuous alcohol fermentation in an immobilized cell rotating-disk reactor. Biotechnol Bioeng 27(6):761–768. doi: 10.1002/bit.260270602 CrossRefGoogle Scholar
  39. 39.
    Sarkar S, Saha M, Roy D et al (2008) Enhanced production of antimicrobial compounds by three salt-tolerant actinobacterial strains isolated from the Sundarbans in a niche-mimic bioreactor. Mar Biotechnol 10(5):518–526. doi: 10.1007/s10126-008-9090-0 CrossRefGoogle Scholar
  40. 40.
    Lewandowski Z, Beyenal H (2007) Fundamentals of biofilm research. CRC Press Inc., Boca RatonCrossRefGoogle Scholar
  41. 41.
    Syron E, Casey E (2008) Membrane-aerated biofilms for high rate biotreatment: performance appraisal, engineering principles, scale-up, and development requirements. Environ Sci Technol 42(6):1833–1844. doi: 10.1021/es0719428 CrossRefGoogle Scholar
  42. 42.
    Gross R, Hauer B, Otto K et al (2007) Microbial biofilms: New catalysts for maximizing productivity of long-term biotransformations. Biotechnol Bioeng 98(6):1123–1134. doi: 10.1002/bit.21547 CrossRefGoogle Scholar
  43. 43.
    Halan B, Schmid A, Buchler K (2010) Maximizing the productivity of catalytic biofilms on solid supports in membrane aerated reactors. Biotechnol Bioeng 106(4):516–527. doi: 10.1002/bit.22732 CrossRefGoogle Scholar
  44. 44.
    Gross R, Buehler K, Schmid A (2013) Engineered catalytic biofilms for continuous large scale production of n-octanol and (S)-styrene oxide. Biotechnol Bioeng 110(2):424–436. doi: 10.1002/bit.24629 CrossRefGoogle Scholar
  45. 45.
    Barclay WR, Meager KM, Abril JR (1994) Heterotrophic production of long-chain omega-3-fatty-acids utilizing algae and algae-like microorganisms. J Appl Phycol 6(2):123–129. doi: 10.1007/bf02186066 CrossRefGoogle Scholar
  46. 46.
    Kuhne S, Lakatos M, Foltz S et al (2013) Characterization of terrestrial cyanobacteria to increase process efficiency in low energy consuming production processes. Sustain Chem Proc 1(1):6. doi: 10.1186/2043-7129-1-6 CrossRefGoogle Scholar
  47. 47.
    Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14(1):217–232CrossRefGoogle Scholar
  48. 48.
    Boyd MR, Gustafson KR, McMahon JB et al (1997) Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrob Agents Chemother 41(7):1521–1530Google Scholar
  49. 49.
    Bewley CA, Gustafson KR, Boyd MR et al (1998) Solution structure of cyanovirin-N, a potent HIV-inactivating protein. Nat Struct Biol 5(7):571–578CrossRefGoogle Scholar
  50. 50.
    Bokesch HR, O’Keefe BR, McKee TC et al (2003) A potent novel anti-HIV protein from the cultured cyanobacterium Scytonema varium. Biochemistry 42(9):2578–2584CrossRefGoogle Scholar
  51. 51.
    Sivonen K, Börner T (2008) Bioactive compounds produced by cyanobacteria. In: Herrero A, Flores EGF (eds) The cyanobacteria: molecular biology, genomics, and evolution. Caister Academic Press, Norfolk, pp 159–197Google Scholar
  52. 52.
    Belnap J, Lange OL (2001) Biological soil crusts: structure, function, and management. Ecological studies. Springer, BerlinGoogle Scholar
  53. 53.
    Lakatos M, Bilger W, Büdel B (2001) Carotenoid composition of terrestrial cyanobacteria: response to natural light conditions in habitats in Venezuela. Eur J Phycol 36:367–375CrossRefGoogle Scholar
  54. 54.
    Dojani S, Lakatos M, Rascher U et al (2007) Nitrogen input by cyanobacterial biofilms of an inselberg into a tropical rainforest in French Guiana. Flora 202(7):521–529CrossRefGoogle Scholar
  55. 55.
    Rascher U, Lakatos M, Büdel B et al (2003) Photosynthetic field capacity of cyanobacteria of a tropical inselberg of the Guiana Highlands. Eur J Phycol 38(3):247–256CrossRefGoogle Scholar
  56. 56.
    Lange O, Bilger W, Rimke S et al (1989) Chlorophyll fluorescence of lichens containing green and blue green algae during hydration by water vapor uptake and by addition of liquid water. Bot Acta 102:306–313CrossRefGoogle Scholar
  57. 57.
    Helm RF, Huang Z, Edwards D et al (2000) Structural characterization of the released polysaccharide of desiccation-tolerant Nostoc commune DRH-1. J Bacteriol 182(4):974–982CrossRefGoogle Scholar
  58. 58.
    Shaw E, Hill DR, Brittain N et al (2003) Unusual water flux in the extracellular polysaccharide of the cyanobacterium Nostoc commune. Appl Environ Microb 69(9):5679–5684CrossRefGoogle Scholar
  59. 59.
    Potts M (1999) Mechanisms of desiccation tolerance in cyanobacteria. Eur J Phycol 34(4):319–328CrossRefGoogle Scholar
  60. 60.
    Fleming ED, Castenholz RW (2007) Effects of periodic desiccation on the synthesis of the UV-screening compound, scytonemin, in cyanobacteria. Environ Microbiol 9(6):1448–1455CrossRefGoogle Scholar
  61. 61.
    Pereira S, Zille A, Micheletti E et al (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33(5):917–941CrossRefGoogle Scholar
  62. 62.
    de Marsac NT (1977) Occurrence and nature of chromatic adaptation in cyanobacteria. J Bacteriol 130(1):82–91Google Scholar
  63. 63.
    Kehoe DM, Gutu A (2006) Responding to color: the regulation of complementary chromatic adaptation. Annu Rev Plant Biol 57:127–150CrossRefGoogle Scholar
  64. 64.
    Malcata FX (2011) Microalgae and biofuels: a promising partnership? Trends Biotechnol 29(11):542–549CrossRefGoogle Scholar
  65. 65.
    Norsker N, Barbosa MJ, Vermuë MH et al (2011) Microalgal production—a close look at the economics. Biotechnol Adv 29(1):24–27CrossRefGoogle Scholar
  66. 66.
    Krug TA, Daugulis AJ (1983) Ethanol-production using Zymomonas mobilis immobilized on an ion-exchange resin. Biotechnol Lett 5(3):159–164. doi: 10.1007/bf00131895 CrossRefGoogle Scholar
  67. 67.
    Kunduru MR, Pometto AL (1996) Continuous ethanol production by Zymomonas mobilis and Saccharomyces cerevisiae in biofilm reactors. J Ind Microbiol 16(4):249–256. doi: 10.1007/bf01570029 CrossRefGoogle Scholar
  68. 68.
    Kunduru MR, Pometto AL (1996) Evaluation of plastic composite-supports for enhanced ethanol production in biofilm reactors. J Ind Microbiol 16(4):241–248. doi: 10.1007/bf01570028 CrossRefGoogle Scholar
  69. 69.
    Wang JL (2000) Production of citric acid by immobilized Aspergillus niger using a rotating biological contactor (RBC). Bioresour Technol 75(3):245–247CrossRefGoogle Scholar
  70. 70.
    Urbance SE, Pometto AL, DiSpirito AA et al. (2003) Medium evaluation and plastic composite support ingredient selection for biofilm formation and succinic acid production by Actinobacillus succinogenes. Food Biotechnol 17(1). doi:  10.1081/fbt-120019984
  71. 71.
    Urbance SE, Pometto AL, DiSpirito AA et al. (2004) Evaluation of succinic acid continuous and repeat-batch biofilm fermentation by Actinobacillus succinogenes using plastic composite support bioreactors. Appl Microbiol Biotechnol 65(6). doi:  10.1007/s00253-004-1634-2
  72. 72.
    Lewis VP, Yang ST (1992) Continuous propionic-acid fermentation by immobilized Propionibacterium acidipropionici in a novel packed-bed bioreactor. Biotechnol Bioeng 40(4):465–474. doi: 10.1002/bit.260400404 CrossRefGoogle Scholar
  73. 73.
    U.S. Department of Energy (2004) Top value added chemicals from biomass. Results of screening for potential candidates from sugars and synthetic gas, vol 1, Washington Google Scholar
  74. 74.
    Khiyami MA, Pometto AL, Kennedy WJ (2006) Ligninolytic enzyme production by Phanerochaete chrysosporium in plastic composite support biofilm stirred tank bioreactors. J Agr Food Chem 54(5). doi:  10.1021/jf051424l
  75. 75.
    Linko S (1988) Production and characterization of extracellular lignin peroxidase from immobilized Phanerochaete chrysosporium in a 10-l bioreactor. Enzyme Microb Technol 10(7):410–417. doi: 10.1016/0141-0229(88)90035-X CrossRefGoogle Scholar
  76. 76.
    Cho HY, Yousef AE, Yang ST (1996) Continuous production of pediocin by immobilized Pediococcus acidilactici P02 in a packed-bed bioreactor. Appl Microbiol Biotechnol 45(5):589–594CrossRefGoogle Scholar
  77. 77.
    Hoover DG, Walsh PM, Kolaetis KM et al. (1988) A bacteriocin produced by Pediococcus species associated with a 5.5-megadalton plasmid. J Food Prot 51(1):29–31Google Scholar
  78. 78.
    Lozano JCN, Meyer JN, Sletten K et al (1992) Purification and amino acid sequence of bacteriocin produced by Pediococcus acidilactici. J Gen Microbiol 138:1985–1990CrossRefGoogle Scholar
  79. 79.
    Liao CC, Yousef AE, Richter ER et al (1993) Pediococcus acidilactici PO2 bacteriocin production in whey permeate and inhibition of Listeria monocytogenes in foods. J Food Sci 58(2):430–434. doi: 10.1111/j.1365-2621.1993.tb04291.x CrossRefGoogle Scholar
  80. 80.
    Xia L, Chung YK, Yang ST et al (2005) Continuous nisin production in laboratory media and whey permeate by immobilized Lactococcus lactis. Process Biochem 40(1):13–24. doi: 10.1016/j.procbio.2003.11.032 CrossRefGoogle Scholar
  81. 81.
    Pongtharangkul T, Demirci A (2006) Evaluation of culture medium for nisin production in a repeated-batch biofilm reactor. Biotechnol Progr 22(1). doi:  10.1021/bp050295q
  82. 82.
    Schügerl K (2005) Process development in biotechnology—a re-evaluation. Eng Life Sci 5(1):15–28. doi: 10.1002/elsc.200402166 CrossRefGoogle Scholar
  83. 83.
    Srivastava P, Kundu S (1999) Studies on cephalosporin-C production in an air lift reactor using different growth modes of Cephalosporium acremonium. Process Biochem 34(4):329–333. doi: 10.1016/s0032-9592(98)00059-4 CrossRefGoogle Scholar
  84. 84.
    Zhang CA, Zhu X, Liao QA et al (2010) Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria. Int J Hydrogen Energy 35(11):5284–5292. doi: 10.1016/j.ijhydene.2010.03.085 CrossRefGoogle Scholar
  85. 85.
    Zhang HS, Bruns MA, Logan BE (2006) Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor. Water Res 40(4):728–734. doi: 10.1016/j.watres.2005.11.041 Google Scholar
  86. 86.
    van Groenestijn JW, Geelhoed JS, Goorissen HP et al (2009) Performance and population analysis of a non-sterile trickle bed reactor inoculated with Caldicellulosiruptor saccharolyticus, a thermophilic hydrogen producer. Biotechnol Bioeng 102(5):1361–1367. doi: 10.1002/bit.22185 CrossRefGoogle Scholar
  87. 87.
    Choudhary S, Schmidt-Dannert C (2010) Applications of quorum sensing in biotechnology. Appl Microbiol Biotechnol 86(5):1267–1279. doi: 10.1007/s00253-010-2521-7 CrossRefGoogle Scholar
  88. 88.
    Demirci A, Pometto AL, Ho, K. L. G. (1997) Ethanol production by Saccharomyces cerevisiae in biofilm reactors. J Ind Microbiol Biotechnol 19(4). doi:  10.1038/sj.jim.2900464
  89. 89.
    Napoli F, Olivieri G, Russo ME et al (2010) Butanol production by Clostridium acetobutylicum in a continuous packed bed reactor. J Ind Microbiol Biotechnol 37(6):603–608. doi: 10.1007/s10295-010-0707-8 CrossRefGoogle Scholar
  90. 90.
    Qureshi N, Maddox IS (1987) Continuous solvent production from whey permeate using cells of Clostridium acetobutylicum immobilized by adsorption onto bonechar. Enzyme Microb Technol 9(11):668–671. doi: 10.1016/0141-0229(87)90125-6 CrossRefGoogle Scholar
  91. 91.
    Demirci A, Pometto AL, Johnson KE (1993) Evaluation of biofilm reactor solid support for mixed-culture lactic-acid production. Appl Microbiol Biotechnol 38(6):728–733CrossRefGoogle Scholar
  92. 92.
    Demirci A, Pometto AL, Johnson KE (1993) Lactic-acid production in a mixed-culture biofilm reactor. Appl Environ Microbiol 59(1):203–207Google Scholar
  93. 93.
    Demirci A, Pometto AL (1995) Repeated-batch fermentation in biofilm reactors with plastic-composite supports for lactic-acid production. Appl Microbiol Biotechnol 43(4):585–589CrossRefGoogle Scholar
  94. 94.
    Hekmat D, Bauer R, Fricke J (2003) Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioprocess Biosyst Eng 26(2):109–116. doi: 10.1007/s00449-003-0338-9 CrossRefGoogle Scholar
  95. 95.
    Casali S, Gungormusler M, Bertin L et al (2012) Development of a biofilm technology for the production of 1,3-propanediol (1,3-PDO) from crude glycerol. Biochem Eng J 64:84–90. doi: 10.1016/j.bej.2011.11.012 CrossRefGoogle Scholar
  96. 96.
    Li XZ, Webb JS, Kjelleberg S et al (2006) Enhanced benzaldehyde tolerance in Zymomonas mobilis biofilms and the potential of biofilm applications in fine-chemical production. Appl Environ Microbiol 72(2):1639–1644. doi: 10.1128/a-em.72.2.1639-1644.2006 CrossRefGoogle Scholar
  97. 97.
    Lee Y, Lee C, Chang H (1989) Citric acid production by Aspergillus niger immobilized on polyurethane foam. Appl Microbiol Biotechnol 30(2):141–143. doi: 10.1007/BF00264001 Google Scholar
  98. 98.
    Cheng K, Demirci A, Catchmark JM (2011) Continuous pullulan fermentation in a biofilm reactor. Appl Microbiol Biotechnol 90(3):921–927. doi: 10.1007/s00253-011-3151-4 CrossRefGoogle Scholar
  99. 99.
    Cheng K, Catchmark JM, Demirci A (2009) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng 3:12. doi: 10.1186/1754-1611-3-12 CrossRefGoogle Scholar
  100. 100.
    Khiyami MA, Al-Fadual SM, Bahklia AH (2011) Polyhydroxyalkanoates production via Bacillus plastic composite support (PCS) biofilm and date palm syrup. J Med Plants Res 5(14)Google Scholar
  101. 101.
    Pongtharangkul T, Demirci A (2006) Effects of fed-batch fermentation and pH profiles on nisin production in suspended-cell and biofilm reactors. Appl Microbiol Biotechnol 73(1):73–79. doi: 10.1007/s00253-006-0459-6 CrossRefGoogle Scholar
  102. 102.
    Zhang HS, Bruns MA, Logan BE (2006) Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor. Water Res 40(4):728–734. doi: 10.1016/j.watres.2005.11.041 CrossRefGoogle Scholar
  103. 103.
    Govender S, Pillay VL, Odhav B (2010) Nutrient manipulation as a basis for enzyme production in a gradostat bioreactor. Enzyme Microbiol Technol 46(7):603–609. doi: 10.1016/j.enzmictec.2010.03.007 CrossRefGoogle Scholar
  104. 104.
    Tsoligkas AN, Winn M, Bowen J et al (2011) Engineering Biofilms for Biocatalysis. ChemBioChem 12(9):1391–1395. doi: 10.1002/cbic.201100200 CrossRefGoogle Scholar
  105. 105.
    Meleigy SA, Khalaf MA (2009) Biosynthesis of gibberellic acid from milk permeate in repeated batch operation by a mutant Fusarium moniliforme cells immobilized on loofa sponge. Bioresour Technol 100(1):374–379. doi: 10.1016/j.biortech.2008.06.024 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • K. Muffler
    • 1
  • M. Lakatos
    • 2
  • C. Schlegel
    • 1
  • D. Strieth
    • 1
  • S. Kuhne
    • 1
  • R. Ulber
    • 1
    Email author
  1. 1.Institute of Bioprocess EngineeringUniversity of KaiserslauternKaiserslauternGermany
  2. 2.Experimental EcologyUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations