Advertisement

Bioremediation via in situ Microbial Degradation of Organic Pollutants

  • Carsten VogtEmail author
  • Hans Hermann Richnow
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 142)

Abstract

Contamination of soil and natural waters by organic pollutants is a global problem. The major organic pollutants of point sources are mineral oil, fuel components, and chlorinated hydrocarbons. Research from the last two decades discovered that most of these compounds are biodegradable under anoxic conditions. This has led to the rise of bioremediation strategies based on the in situ biodegradation of pollutants. Monitored natural attenuation is a concept by which a contaminated site is remediated by natural biodegradation; to evaluate such processes, a combination of chemical and microbiological methods are usually used. Compound specific stable isotope analysis emerged as a key method for detecting and quantifying in situ biodegradation. Natural attenuation processes can be initiated or accelerated by manipulating the environmental conditions to become favorable for indigenous pollutant degrading microbial communities or by adding externally breeded specific pollutant degrading microorganisms; these techniques are referred to as enhanced natural attenuation. Xenobiotic micropollutants, such as pesticides or pharmaceuticals, contaminate diffusively large areas in low concentrations; the biodegradation pattern of such contaminations are not yet understood.

Graphical Abstract

Keywords

In situ biodegradation Micropollutants Mineral oil Monitored and enhanced natural attenuation 

Abbreviations

BSS

Benzyl succinate synthase

BTEX

Benzene-toluene-ethylbenzene-xylenes

cDCE

cis-Dichloroethylene

CHC

Chlorinated hydrocarbons

CSIA

Compound-specific isotope analysis

2D-CSIA

Two-dimensional compound specific isotope analysis

DNAPL

Dense nonaqueous phase liquids

EEA

European Environment Agency

ETBE

Ethyl-tert-butyl ether

ENA

Enhanced natural attenuation

HRC

Hydrogen releasing compounds

IRMS

Isotope ratio mass spectrometry

LC-IRMS

Liquid chromatography-isotope ratio mass spectrometry

mg/L

Milligram per liter

MNA

Monitored natural attenuation

MTBE

Methyl-tert-butyl ether

NAPL

Nonaqueous phase liquids

NRC

National Research Council

OSWER

Office of Solid Waste and Emergency Response

PAHs

Polycyclic aromatic hydrocarbons

PCE

Tetrachloroethylene or perchloroethylene

POPs

Persistent organic pollutants

TCE

Trichloroethylene

USA

United States of America

US-EPA

U.S. Environmental Protection Agency

References

  1. 1.
    Adrian L, Szewzyk U, Wecke J, Görisch H (2000) Bacterial dehalorespiration with chlorinated benzenes. Nature 408:580–583CrossRefGoogle Scholar
  2. 2.
    Alexander M (1994) Biodegradation and bioremediation. Academic Press, San Diego, California, USAGoogle Scholar
  3. 3.
    Altenburger R, Scholz S, Schmitt-Jansen M, Busch W, Escher BI (2012) Mixture toxicity revisited from a toxicogenomic perspective. Environ Sci Technol 46:2508–2522CrossRefGoogle Scholar
  4. 4.
    Anderson RT, Lovley DR (2000) Anaerobic bioremediation of benzene under sulfate-reducing conditions in a petroleum-contaminated aquifer. Environ Sci Technol 34:2261–2266CrossRefGoogle Scholar
  5. 5.
    Aronson D, Howard PH (1997) Anaerobic biodegradation of organic chemicals in groundwater: a summary of field and laboratory studies. Final Report. Environmental Science Center. Syracus Research Corporation, TR-97-02237Google Scholar
  6. 6.
    Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45:180–209Google Scholar
  7. 7.
    Balcke GU, Paschke H, Vogt C, Schirmer M (2009) Pulsed gas injection: a minimum effort approach for enhanced natural attenuation of chlorobenzene in contaminated groundwater. Environ Pollut 157:2011–2018CrossRefGoogle Scholar
  8. 8.
    Blasco R, Wittich RM, Mallavarapu M, Timmis KN, Pieper DH (1995) From xenobiotic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. J Biol Chem 270:29229–29235CrossRefGoogle Scholar
  9. 9.
    Boll M, Fuchs G (2005) Unusual reactions involved in anaerobic metabolism of phenolic compounds. Biol Chem 386:989–997Google Scholar
  10. 10.
    Bombach P, Richnow HH, Kästner M, Fischer A (2010) Current approaches for the assessment of in situ biodegradation. Appl Microbiol Biotechnol 86:839–852CrossRefGoogle Scholar
  11. 11.
    Boxall AB, Sinclair CJ, Fenner K, Kolpin D, Maund SJ (2004) When synthetic chemicals degrade in the environment. Environ Sci Technol 38:368A–375ACrossRefGoogle Scholar
  12. 12.
    Bunge M, Adrian L, Kraus A, Opel M, Lorenz WG, Andreesen JR, Görisch H, Lechner U (2003) Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature 421:357–360CrossRefGoogle Scholar
  13. 13.
    Corseuil HX, Monier AL, Fernandes M, Schneider MR, Nunes CC, do Rosario M, Alvarez PJ (2011) BTEX plume dynamics following an ethanol blend release: geochemical footprint and thermodynamic constraints on natural attenuation. Environ Sci Technol 45:3422–3429CrossRefGoogle Scholar
  14. 14.
    Cunningham JA, Rahme H, Hopkins GD, Lebron C, Reinhard M (2001) Enhanced in situ bioremediation of BTEX-contaminated groundwater by combined injection of nitrate and sulfate. Environ Sci Technol 35:1663–1670CrossRefGoogle Scholar
  15. 15.
    da Silva ML, Gomez DE, Alvarez PJ (2013) Analytical model for BTEX natural attenuation in the presence of fuel ethanol and its anaerobic metabolite acetate. J Contam Hydrol 146:1–7CrossRefGoogle Scholar
  16. 16.
    Davidova IA, Gieg LM, Duncan KE, Suflita JM (2007) Anaerobic phenanthrene mineralization by a carboxylating sulfate-reducing bacterial enrichment. ISME J 1:436–442CrossRefGoogle Scholar
  17. 17.
    Declercq I, Cappuyns V, Duclos Y (2012) Monitored natural attenuation (MNA) of contaminated soils: state of the art in Europe–a critical evaluation. Sci Total Environ 426:393–405CrossRefGoogle Scholar
  18. 18.
    EEA, European Environment Agency (2007) Progress in management of contaminated sites (CSI 015). http://www.eea.europa.eu/data-and-maps/indicators/progress-in-management-of-contaminated-sites/. Accessed 11 June 2013
  19. 19.
    EEA, European Environment Agency (2008) Overview of contaminants affecting soil and groundwater in Europe. http://www.eea.europa.eu/data-and-maps/figures/overview-of-contaminants-affecting-soil-and-groundwater-in-europe. Accessed 13 June 2013
  20. 20.
    El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275CrossRefGoogle Scholar
  21. 21.
    Elsner M, Zwank L, Hunkeler D, Schwarzenbach RP (2005) A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants. Environ Sci Technol 39:6896–6916CrossRefGoogle Scholar
  22. 22.
    Elsner M, Jochmann MA, Hofstetter TB, Hunkeler D, Bernstein A, Schmidt TC, Schimmelmann A (2012) Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Anal Bioanal Chem 403:2471–2491CrossRefGoogle Scholar
  23. 23.
    Ellis DE, Lutz EJ, Odom JM (2000) Bioaugmentation for accelerated in situ anaerobic bioremediation. Environ Sci Technol 34:2254–2260CrossRefGoogle Scholar
  24. 24.
    Escher BI, Fenner K (2011) Recent advances in environmental risk assessment of transformation products. Environ Sci Technol 45:3835–3847CrossRefGoogle Scholar
  25. 25.
    European Commission (2008) Priority substances and certain other pollutants according to annex II of directive 2008/105/EC. http://ec.europa.eu/environment/water/water-framework/prioritysubstances.htm.11.06.2013. Accessed 13 June 2013
  26. 26.
    Fenner K, Canonica S, Wackett LP, Elsner M (2013) Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341:752–758CrossRefGoogle Scholar
  27. 27.
    Fetzner S (1998) Bacterial dehalogenation. Appl Microbiol Biotechnol 50:633–657Google Scholar
  28. 28.
    Fetzner S (2012) Ring-cleaving dioxygenases with a cupin fold. Appl Environ Microbiol 78:2505–2514CrossRefGoogle Scholar
  29. 29.
    Fischer A, Bauer J, Meckenstock RU, Stichler W, Griebler C, Maloszewski P, Kästner M, Richnow HH (2006) A multitracer test proving the reliability of Rayleigh equation-based approach for assessing biodegradation in a BTEX contaminated aquifer. Environ Sci Technol 40:4245–4252CrossRefGoogle Scholar
  30. 30.
    Fischer A, Theuerkorn K, Stelzer N, Gehre M, Thullner M, Richnow HH (2007) Applicability of stable isotope fractionation analysis for the characterization of benzene biodegradation in a BTEX-contaminated aquifer. Environ Sci Technol 41:3689–3696CrossRefGoogle Scholar
  31. 31.
    Fischer A, Herklotz I, Herrmann S, Thullner M, Weelink SA, Stams AJ, Schlömann M, Richnow HH, Vogt C (2008) Combined carbon and hydrogen isotope fractionation investigations for elucidating benzene biodegradation pathways. Environ Sci Technol 42:4356–4363CrossRefGoogle Scholar
  32. 32.
    Fischer A, Gehre M, Breitfeld J, Richnow HH, Vogt C (2009) Carbon and hydrogen isotope fractionation of benzene during biodegradation under sulfate-reducing conditions: a laboratory to field site approach. Rapid Commun Mass Spectrom 23:2439–2447CrossRefGoogle Scholar
  33. 33.
    Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds—from one strategy to four. Nat Rev Microbiol 9:803–816CrossRefGoogle Scholar
  34. 34.
    Gribble GW (2003) The diversity of naturally produced organohalogens. Chemosphere 52:289–297CrossRefGoogle Scholar
  35. 35.
    Griebler C, Safinowski M, Vieth A, Richnow HH, Meckenstock RU (2004) Combined application of stable carbon isotope analysis and specific metabolites determination for assessing in situ degradation of aromatic hydrocarbons in a tar oil-contaminated aquifer. Environ Sci Technol 38:617–631CrossRefGoogle Scholar
  36. 36.
    Head IM, Jones DM, Röling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182CrossRefGoogle Scholar
  37. 37.
    Heider J (2007) Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms. Curr Opin Chem Biol 1:188–194CrossRefGoogle Scholar
  38. 38.
    Hites RA (2011) Dioxins: an overview and history. Environ Sci Technol 45:16–20CrossRefGoogle Scholar
  39. 39.
    Hofstetter TB, Berg M (2011) Assessing transformation processes of organic contaminants by compound-specific stable isotope analysis. Trends Anal Chem 30:618–627CrossRefGoogle Scholar
  40. 40.
    Hunkeler D, Morasch B (2010) Isotope fractionation during transformation processes. In: Aelion CM, Höhener P, Hunkeler D, Aravena R (eds) Environmental isotopes in biodegradation and bioremediation. CRC Press, Boca Raton, USAGoogle Scholar
  41. 41.
    Illmann WA, Alvarez PJ (2009) Performance assessment of bioremediation and natural attenuation. Crit Rev Env Sci Tech 39:209–270CrossRefGoogle Scholar
  42. 42.
    Jiménez N, Morris BEL, Cai M, Yao J, Gründger F, Richnow HH, Krüger M (2012) Evidence for in situ methanogenic oil degradation in the Dagang oil field. Org Geochem 52:44–54CrossRefGoogle Scholar
  43. 43.
    Johnson HA, Pelletier DA, Spormann AM (2001) Isolation and characterization of anaerobic ethylbenzene dehydrogenase, a novel Mo-Fe-S enzyme. J Bacteriol 183:4536–4542CrossRefGoogle Scholar
  44. 44.
    Johnson SJ, Woolhouse KJ, Prommer H, Barry DA, Christofi N (2003) Contribution of anaerobic microbial activity to natural attenuation of benzene in groundwater. Eng Geol 70:343–349CrossRefGoogle Scholar
  45. 45.
    Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BF, Oldenburg T, Erdmann M, Larter SR (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451:176–180CrossRefGoogle Scholar
  46. 46.
    Jorgenson JL (2001) Aldrin and dieldrin: a review of research on their production, environmental deposition and fate, bioaccumulation, toxicology, and epidemiology in the United States. Environ Health Perspect 109:113–139CrossRefGoogle Scholar
  47. 47.
    Kleemann R, Meckenstock RU (2011) Anaerobic naphthalene degradation by Gram-positive, iron-reducing bacteria. FEMS Microbiol Ecol 78:488–496CrossRefGoogle Scholar
  48. 48.
    Kleinsteuber S, Schleinitz KM, Vogt C (2012) Key players and team play: anaerobic microbial communities in hydrocarbon-contaminated aquifers. Appl Microbiol Biotechnol 94:851–873CrossRefGoogle Scholar
  49. 49.
    Kniemeyer O, Heider J (2001) Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme. J Biol Chem 276:21381–21386CrossRefGoogle Scholar
  50. 50.
    Kniemeyer O, Fischer T, Wilkes H, Glöckner FO, Widdel F (2003) Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium. Appl Environ Microbiol 69:760–768CrossRefGoogle Scholar
  51. 51.
    Kümmel S, Kuntze K, Vogt C, Boll M, Heider J, Richnow HH (2013) Evidence for benzylsuccinate synthase subtypes by stable isotope tools. J Bacteriol 195:4660–4667Google Scholar
  52. 52.
    LABO—Bund/Länder Arbeitsgemeinschaft Bodenschutz, Ständiger Ausschuss Altlasten (2012) Bericht des ALA über “Bundesweite Kennzahlen zur Altlastenstatistik” https://www.labo-deutschland.de/Veroeffentlichungen.html. Accessed 11 June 2013
  53. 53.
    Langwaldt JH, Puhakka JA (2000) On-site biological remediation of contaminated groundwater: a review. Environ Pollut 107:187–197CrossRefGoogle Scholar
  54. 54.
    Leahy JG, Batchelor PJ, Morcomb SM (2003) Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev 27:449–479CrossRefGoogle Scholar
  55. 55.
    Lee MD, Thomas JM, Borden RC, Bedient PB, Ward CH, Wilson JT (1988) Biorestoration of aquifers contaminated with organic compounds. CRC Crit Rev Environ Control 18:29–87CrossRefGoogle Scholar
  56. 56.
    Leuthner B, Leutwein C, Schulz H, Hörth P, Haehnel W, Schiltz E, Schaegger H, Heider J (1998) Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol Microbiol 28:615–628CrossRefGoogle Scholar
  57. 57.
    Lopes Ferreira N, Malandain C, Fayolle-Guichard F (2006) Enzymes and genes involved in the aerobic biodegradation of methyl tert-butyl ether (MTBE). Appl Microbiol Biotechnol 72:252–262CrossRefGoogle Scholar
  58. 58.
    Löffler FE, Edwards EA (2006) Harnessing microbial activities for environmental cleanup. Curr Opin Biotechnol 17:274–284CrossRefGoogle Scholar
  59. 59.
    Major DW, McMaster ML, Cox EE, Edwards EA, Dworatzek SM, Hendrickson ER, Starr MG, Payne JA, Buonamici LW (2002) Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ Sci Technol 36:5106–5116CrossRefGoogle Scholar
  60. 60.
    Maphosa F, Lieten SH, Dinkla I, Stams AJ, Smidt H, Fennell DE (2012) Ecogenomics of microbial communities in bioremediation of chlorinated contaminated sites. Front Microbiol 3:351. doi: 10.3389/fmicb.2012.00351 CrossRefGoogle Scholar
  61. 61.
    Mattes TE, Alexander AK, Coleman NV (2010) Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. FEMS Microbiol Rev 34:445–475Google Scholar
  62. 62.
    Meckenstock RU, Morasch B, Griebler C, Richnow HH (2004) Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated aquifers. J Contam Hydrol 75:215–255CrossRefGoogle Scholar
  63. 63.
    Meckenstock RU, Mouttaki H (2011) Anaerobic degradation of non-substituted aromatic hydrocarbons. Curr Opin Biotechnol 22:406–414CrossRefGoogle Scholar
  64. 64.
    Michels J, Stuhrmann M, Frey C, Koschitzky HP (2008) Handlungsempfehlungen mit Methodensammlung— Natürliche Schadstoffminderung bei der Sanierung von Altlasten. DECHEMA e.V., Frankfurt, Germany http://www.natural-attenuation.de/media/document/15_6948kora-handlungsempfehlungen.pdf. Accessed 30 July 2013
  65. 65.
    Mouttaki H, Johannes J, Meckenstock RU (2012) Identification of naphthalene carboxylase as a prototype for the anaerobic activation of non-substituted aromatic hydrocarbons. Environ Microbiol 14:2770–2774CrossRefGoogle Scholar
  66. 66.
    Musat F, Galushko A, Jacob J, Widdel F, Kube M, Reinhardt R, Wilkes H, Schink B, Rabus R (2009) Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environ Microbiol 11:209–219CrossRefGoogle Scholar
  67. 67.
    National Research Council (1993) In situ bioremediation: when does it work? National Academies Press, Washington, USAGoogle Scholar
  68. 68.
    National Research Council (2000) Natural attenuation for groundwater remediation. National Academies Press, Washington, USAGoogle Scholar
  69. 69.
    Nijenhuis I, Schmidt M, Pellegatti E, Paramatti E, Richnow HH, Gargini A (2013) A combined stable isotope approach for source apportionment of chlorinated ethenes and related degradation processes at a complex multi-contamination event and plume field site. J Cont Hydrol (in press)Google Scholar
  70. 70.
    Novarino G, Warren A, Butler H, Lambourne G, Boxshall A, Bateman J, Kinner NE, Harvey RW, Mosse RA, Teltsch B (1997) Protistan communities in aquifers: a review. FEMS Microbiol Rev 20:261–275CrossRefGoogle Scholar
  71. 71.
    Philipp B, Schink B (2012) Different strategies in anaerobic biodegradation of aromatic compounds: nitrate reducers versus strict anaerobes. Environ Microbiol Rep 4:469–478CrossRefGoogle Scholar
  72. 72.
    Rakoczy J, Schleinitz KM, Müller N, Richnow HH, Vogt C (2011) Effects of hydrogen and acetate on benzene mineralisation under sulphate-reducing conditions. FEMS Microbiol Ecol 77:238–247CrossRefGoogle Scholar
  73. 73.
    Ramos DT, da Silva ML, Chiaranda HS, Alvarez PJ, Corseuil HX (2013) Biostimulation of anaerobic BTEX biodegradation under fermentative methanogenic conditions at source-zone groundwater contaminated with a biodiesel blend (B20). Biodegradation 24:333–341CrossRefGoogle Scholar
  74. 74.
    Rico-Martínez R, Snell TW, Shearer TL (2013) Synergistic toxicity of Macondo crude oil and dispersant Corexit 9500A(®) to the Brachionus plicatilis species complex (Rotifera). Environ Pollut 173:5–10CrossRefGoogle Scholar
  75. 75.
    Rosell M, Gonzalez-Olmos R, Rohwerder T, Rusevova K, Georgi A, Kopinke FD, Richnow HH (2012) Critical evaluation of the 2D-CSIA scheme for distinguishing fuel oxygenate degradation reaction mechanisms. Environ Sci Technol 46:4757–4766CrossRefGoogle Scholar
  76. 76.
    Safinowski M, Griebler C, Meckenstock RU (2006) Anaerobic cometabolic transformation of polycyclic and heterocyclic aromatic hydrocarbons: evidence from laboratory and field studies. Environ Sci Technol 40:4165–4173CrossRefGoogle Scholar
  77. 77.
    Schiedek T, Grathwohl P, Teutsch G (1997) Literature study regarding Natural Attenuation/biodegradation of pollutants in groundwater. University of Tübingen, Chair of Applied GeologyGoogle Scholar
  78. 78.
    Schink B, Philipp B, Müller J (2000) Anaerobic degradation of phenolic compounds. Naturwissenschaften 87:12–23CrossRefGoogle Scholar
  79. 79.
    Schmidt TC, Jochmann MA (2012) Origin and fate of organic compounds in water: characterization by compound-specific stable isotope analysis. Annu Rev Anal Chem 5:133–155CrossRefGoogle Scholar
  80. 80.
    Schmidt TC, Zwank L, Elsner M, Berg M, Meckenstock RU, Haderlein SB (2004) Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges. Anal Bioanal Chem 378:283–300CrossRefGoogle Scholar
  81. 81.
    Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077CrossRefGoogle Scholar
  82. 82.
    Schweigert N, Zehnder AJB, Eggen RIL (2001) Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environ Microbiol 3:81–91CrossRefGoogle Scholar
  83. 83.
    Scow KM, Hicks KA (2005) Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Curr Opin Biotechnol 16:246–253CrossRefGoogle Scholar
  84. 84.
    Smidt H, de Vos WM (2004) Anaerobic microbial dehalogenation. Annu Rev Microbiol 58:43–73CrossRefGoogle Scholar
  85. 85.
    Stams AJ, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577CrossRefGoogle Scholar
  86. 86.
    Stelzer N, Buning C, Pfeifer F, Dohrmann AB, Tebbe CC, Nijenhuis I, Kästner M, Richnow HH (2006) In situ microcosms to evaluate natural attenuation potentials in contaminated aquifers. Org Geochem 37:1394–1410CrossRefGoogle Scholar
  87. 87.
  88. 88.
    Sun GD, Xu Y, Jin JH, Zhong ZP, Liu Y, Luo M, Liu ZP (2012) Pilot scale ex-situ bioremediation of heavily PAHs-contaminated soil by indigenous microorganisms and bioaugmentation by a PAHs-degrading and bioemulsifier-producing strain. J Hazard Mater 233–234:72–78CrossRefGoogle Scholar
  89. 89.
    Taş N, van Eekert MH, de Vos WM, Smidt H (2010) The little bacteria that can—diversity, genomics and ecophysiology of ‘Dehalococcoides’ spp. in contaminated environments. Microb Biotechnol 3:389–402Google Scholar
  90. 90.
    Thullner M, Fischer A, Richnow HH, Wick LY (2013) Influence of mass transfer on stable isotope fractionation. Appl Microbiol Biotechnol 97:441–452CrossRefGoogle Scholar
  91. 91.
    Tyagi M, da Fonseca MM, de Carvalho CC (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241CrossRefGoogle Scholar
  92. 92.
    University of Minnesota (2013) Biocatalysis/Biodegradation database. http://umbbd.ethz.ch/tol/tdo.html. Accessed 27 June 2013
  93. 93.
    United States Environmental Protection Agency (US-EPA) (1999) Use of monitored natural attenuation at superfund, RCRA corrective action, and underground storage tank sites—directive OSWER 9200, pp 4–17Google Scholar
  94. 94.
    United States Environmental Protection Agency (US-EPA) (2004) Cleaning up the nation’s waste sites: markets and technology trends. Office of Solid Waste and Emergency Response, Washington DCGoogle Scholar
  95. 95.
    United States Environmental Protection Agency (US-EPA) (2006) Evaluation of the role of Dehalococcoides in the natural attenuation of chlorinated ethylenes in ground water. Office of Research and Development, Ada, OklahomaGoogle Scholar
  96. 96.
    United States Environmental Protection Agency (US-EPA) (2008) A guide for assessing biodegradation and source identification of organic ground water contaminants using compound specific isotope analysis (CSIA). Office of Research and Development, Ada, OklahomaGoogle Scholar
  97. 97.
    Vaillancourt FH, Bolin JT, Eltis LD (2006) The ins and outs of ring-cleaving dioxygenases. Crit Rev Biochem Mol Biol 41:241–267CrossRefGoogle Scholar
  98. 98.
    van Breukelen BM, Prommer H (2008) Beyond the Rayleigh equation: reactive transport modeling of isotope fractionation effects to improve quantification of biodegradation. Environ Sci Technol 42:2457–2463CrossRefGoogle Scholar
  99. 99.
    van Breukelen BM (2007) Extending the Rayleigh equation to allow competing isotope fractionating pathways to improve quantification of biodegradation. Environ Sci Technol 41:4004–4010CrossRefGoogle Scholar
  100. 100.
    van Breukelen BM (2007) Quantifying the degradation and dilution contribution to natural attenuation of contaminants by means of an open system rayleigh equation. Environ Sci Technol 41:4980–4985CrossRefGoogle Scholar
  101. 101.
    van der Meer JR, Werlen C, Nishino SF, Spain JC (1998) Evolution of a pathway for chlorobenzene metabolism leads to natural attenuation in contaminated groundwater. Appl Environ Microbiol 64:4185–4193Google Scholar
  102. 102.
    Vogt C, Alfreider A, Griebler C (2003) Grundwasserverschmutzung und—sanierung. In: Griebler C, Mößlacher F (eds) Grundwasser-Ökologie. Eine Einführung. Uni-Taschenbücher (UTB) GmbH, vol 2111, pp 367–408Google Scholar
  103. 103.
    Vogt C, Kleinsteuber S, Richnow HH (2011) Anaerobic benzene degradation by bacteria. Microb Biotechnol 4:710–724CrossRefGoogle Scholar
  104. 104.
    Vogt C, Cyrus E, Herklotz I, Herrmann S, Bahr A, Richnow HH, Fischer A (2008) Evaluation of aerobic and anaerobic toluene degradation pathways by two dimensional stable isotope fractionation. Environ Sci Technol 42:7793–7800CrossRefGoogle Scholar
  105. 105.
    Weelink SAB, van Eekert MHA, Stams AJM (2010) Degradation of BTEX by anaerobic bacteria: physiology and application. Rev Environ Sci Biotechnol 9:359–385CrossRefGoogle Scholar
  106. 106.
    Weiner JM, Lovley DR (1998) Anaerobic benzene degradation in petroleum-contaminated aquifer sediments after inoculation with a benzene-oxidizing enrichment. Appl Environ Microbiol 64:775–778Google Scholar
  107. 107.
    Weissenfels WD, Klewer HJ, Langhoff J (1992) Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity. Appl Microbiol Biotechnol 36:689–696CrossRefGoogle Scholar
  108. 108.
    Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276CrossRefGoogle Scholar
  109. 109.
    Zengler K, Richnow HH, Rossello-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269CrossRefGoogle Scholar
  110. 110.
    Zhang X, Young LY (1997) Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Appl Environ Microbiol 63:4759–4764Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Isotope BiogeochemistryHelmholtz Centre for Environmental Research—UFZLeipzigGermany

Personalised recommendations