Novel Materials for Biofilm Reactors and their Characterization

  • C. Müller-Renno
  • S. Buhl
  • N. Davoudi
  • J. C. Aurich
  • S. Ripperger
  • R. Ulber
  • K. Muffler
  • Ch. Ziegler
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 146)


The application of adherently growing microorganisms for biotechnological production processes is established, but it is still a niche technology with only a small economic impact. However, novel approaches are under development for new types of biofilm reactors. In this context, increasingly more microstructured metal surfaces are being investigated, and they show positive effects on the bacterial growth and the biofilm establishment. However, for comparison of the data, the different surface materials have to correspond in their different characteristics, such as wettability and chemical composition. Also, new materials, such as plastic composite supports, were developed. To understand the interaction between these new materials and the biofilm-producing microorganisms, different surface science methods have to be applied to reveal a detailed knowledge of the surface characteristics. In conclusion, microstructured surfaces show a high potential for enhanced biofilm growth, probably accompanied by an enhanced productivity of the microorganisms.

Graphical Abstract


Biofilm reactor Interaction Interface Reactor materials Surface science methods 



We acknowledge the financial support from the Deutsche Forschungsgemeinschaft (SFB926).


  1. 1.
    Anselme K et al (2010) The interaction of cells and bacteria with surfaces structured at the nanometer scale. Acta Biomater 6:3824–3846CrossRefGoogle Scholar
  2. 2.
    Demirci A et al (2007) Application of biofilm reactors for production of value-added products by microbial fermentation. Biofilms in the food environment. Blackwell Publishing Ltd, Oxford, pp 167–189Google Scholar
  3. 3.
    Bazaka K et al (2011) Do Bacteria Differentiate Between Degrees of Nanoscale Surface Roughness? Biotechnol J 6(9):1103–1114CrossRefGoogle Scholar
  4. 4.
    Diaz C et al (2008) Influence of Surface Sub-Micropattern on the Adhesion of Pioneer Bacteria on Metals. Artif Organ 32(4):292–298CrossRefGoogle Scholar
  5. 5.
    Diaz C et al (2010) Organization of Pseudomans fluorescens on Chemically Different Nano/Microstrucutred Surfaces. Appl Mater Interfaces 2(9):2530–2539CrossRefGoogle Scholar
  6. 6.
    Hochbaum AI et al (2010) Bacteria pattern spontaneously on periodic nanostructure arrays. Nano Lett 10:3717–3721CrossRefGoogle Scholar
  7. 7.
    Bhushan B (2010) Springer Handbook of Nanotechnology, 3rd edn. Springer, HeidelbergGoogle Scholar
  8. 8.
    Anselme K et al (2010) Cell/Material interfaces: influence of surface chemistry and surface topography on cell adhesion. J Adhes Sci Technol 24:831–852CrossRefGoogle Scholar
  9. 9.
    Binnig G et al (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933CrossRefGoogle Scholar
  10. 10.
    Lower SK et al (2000) Measuring interfacial and adhesion forces between bacteria and mineral surfaces with biological force microscopy. Geochim Cosmochim Acta 64(18):3133–3139CrossRefGoogle Scholar
  11. 11.
    Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87CrossRefGoogle Scholar
  12. 12.
    Vogler EA (1998) Structure and reactivity of water at biomaterial surfaces. Adv Colloid Interface Sci 74:69–117CrossRefGoogle Scholar
  13. 13.
    Vogler EA (1999) Water and the acute biological response to surfaces. J Biomater Sci Polym Ed 10:1015–1045CrossRefGoogle Scholar
  14. 14.
    Berg JM et al (1994) Three-component Langmuir-Blodgett film with a controllable degree of polarity. Langmuir 10:1225–1234CrossRefGoogle Scholar
  15. 15.
    Marmur A et al (2004) The lotus effect: superhydrophobicity and metastability. Langmuir 20:3517–3519CrossRefGoogle Scholar
  16. 16.
    Cheng YT et al (2005) Is the lotus leaf superhydrophobic? Appl Phys Lett 86:144101CrossRefGoogle Scholar
  17. 17.
    Martines E et al (2005) Superhydrophobicity and superhydrophilicity of regular nanopatterns. Nano Lett 5(10):2097–2103CrossRefGoogle Scholar
  18. 18.
    Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994CrossRefGoogle Scholar
  19. 19.
    Cassie ABD et al (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551CrossRefGoogle Scholar
  20. 20.
    Müller C et al (2010) Initial bioadhesion on dental materials as a function of contact time, pH, surface wettability and isoelectric point. Langmuir 26(6):4136–4141CrossRefGoogle Scholar
  21. 21.
    Finlay JA et al (2010) Barnacle settlement and the adhesion of protein and diatom microfouling to xergogel films with varying surface energy and water wettability. Biofouling: J Bioadhesion Biofilm Res 26(6):657–666CrossRefGoogle Scholar
  22. 22.
    Dûfrene YF (2003) Recent progress in the application of atomic force microscopy imaging and force spectroscopy to microbiology. Curr Opin Microbiol 6(3):317–323CrossRefGoogle Scholar
  23. 23.
    Mazumder S et al (2010) Role of hydrophobicity in bacterial adherence to carbon nanostructures and biofilm formation. Biofouling: J Bioadhesion Biofilm Res 26(3):333–339CrossRefGoogle Scholar
  24. 24.
    Teixeira P et al (1999) Influence of surface characteristics on the adhesion of Alcaligenes Denitrificans to polymeric substrates. J Adhes Sci Technol 13(11):1287–1294CrossRefGoogle Scholar
  25. 25.
    Pereira MA et al (2000) Influence of physico-chemical properties of porous microcarriers on the adhesion of an anaerobic consortium. J Ind Microbiol Biotechnol 24(3):181–186CrossRefGoogle Scholar
  26. 26.
    Ho KLG et al (1997) Ingredient selection for plastic composite supports for L-(+)-lactic acid biofilm fermentation by Lactobacillus Casei Subsp. Rhamnosus. Appl Environ Microbiol 63(7):2516–2523Google Scholar
  27. 27.
    Hartvig RA et al (2011) Protein adsorption at charged surfaces: the role of electrostatic interactions and interfacial charge regulation. Langmuir 27(6):2634–2643CrossRefGoogle Scholar
  28. 28.
    Müller C et al (2013) The Scanning Force Microscope in Bacterial Cell Investigations. Phys Status Solidi A 210(5):846–852CrossRefGoogle Scholar
  29. 29.
    Touhami A et al (2003) Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 19:4539–4543CrossRefGoogle Scholar
  30. 30.
    Webb HK et al (2011) Physico-chemical characterization of cells using atomic force microscopy—current research and methodologies. J Microbiol Methods 86(2):131–139CrossRefGoogle Scholar
  31. 31.
    Cappella B et al (1997) Force–Distance curves by AFM. IEEE Eng Med Biol 16(2):58–65CrossRefGoogle Scholar
  32. 32.
    Chao Y et al (2011) Optimization of fixation methods for observation of bacterial cell morphology and surface ultrastructures by atomic force microscopy. Appl Microbiol Biotechnol 92:381–392CrossRefGoogle Scholar
  33. 33.
    Stroh C et al (2004) Single molecule recognition imaging microscopy. PNAS 101(34):12503–12507CrossRefGoogle Scholar
  34. 34.
    Dupres V et al (2007) Probing molecular recognition sites on biosurfaces using AFM. Biomaterials 28:2393–2402CrossRefGoogle Scholar
  35. 35.
    Dorobantu LS et al (2008) Atomic force microscopy measurement of heterogeinity in bacterial surface hydrophobicity. Lanmguir 24:4944–4951CrossRefGoogle Scholar
  36. 36.
    Ebner A et al (2005) Localization of single Avidin–Biotin interactions using simultaneous topography and molecular recognition imaging. Chem Phys Chem 6(5):897–900Google Scholar
  37. 37.
    Ebner A et al (2007) A new simple method for linking of antibodies to atomic force microscopy tips. Bioconjug Chem 18(4):1176–1184CrossRefGoogle Scholar
  38. 38.
    Dûfrene YF et al (2002) Atomic force microscopy, a powerful tool in microbiologiy. J Bacteriol 184(19):5205–5213CrossRefGoogle Scholar
  39. 39.
    Dûfrene YF (2011) Life at the nanoscale—atomic force microscopy of live cells, pan stanford publishing, SingaporeGoogle Scholar
  40. 40.
    Hinterdorfer P et al (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3:347–355CrossRefGoogle Scholar
  41. 41.
    Helenius J et al (2008) Single cell force spectroscopy. J Cell Sci 121:1785–1791CrossRefGoogle Scholar
  42. 42.
    Lee H et al (2009) Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater 21:431–434CrossRefGoogle Scholar
  43. 43.
    Kang S et al (2009) Bioinspired single bacterial cell force spectroscopy. Langmuir 25(2009):9656–9659CrossRefGoogle Scholar
  44. 44.
    Lower SK et al (2001) Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and α-FeOOH. Science 292:1360–1363CrossRefGoogle Scholar
  45. 45.
    Neal AL et al (2005) Cell adhesion of Shewanella oneidensis to iron oxide minerals: effect of different single crystal faces. Geochem Trans 6:77–84CrossRefGoogle Scholar
  46. 46.
    Wojcikiewiewicz EP et al (2004) Force and compliance measurements on living cells using atomic force microscopy (AFM). Biol Proced Online 6(1):1–9CrossRefGoogle Scholar
  47. 47.
    Buck AW et al (2010) Bonds between fibronectin and fibronectin-binding proteins on Staphylococcus aureus and Lactococcus Lactis. Langmuir 26:10764–10770CrossRefGoogle Scholar
  48. 48.
    Müller DJ et al (2011) Force nanoscopy of living cells. Curr Biol 21(6):R212–R216CrossRefGoogle Scholar
  49. 49.
    Verran J et al (2010) Use of the atomic force microscope to determine the strength of bacterial attachment to grooved surface features. J Adhes Sci Technol 24(13–14):2271–2285CrossRefGoogle Scholar
  50. 50.
    Boks NP et al (2008) Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces. Microbiology 154:3122–3133CrossRefGoogle Scholar
  51. 51.
    Scheuermann TR et al (1998) Effects of substratum topography on bacterial adhesion. J Colloid Interface Sci 208:23–33CrossRefGoogle Scholar
  52. 52.
    Xu LC et al (2012) Submicron-textured surface reduces Staphylococcal bacterial adhesion and biofilm formation. Acta Biomater 8:72–81CrossRefGoogle Scholar
  53. 53.
    Geisse NA (2009) AFM and combined optical techniques. Mater Today 12(7–8):40–45CrossRefGoogle Scholar
  54. 54.
    Casuso I et al (2011) Biological AFM: where we come from—where we are—where we may go. J Mol Recognit 24(3):406–413CrossRefGoogle Scholar
  55. 55.
    Rösch c. et al (2013) Influence of Protein Immobilization on Protein-Protein Interaction Measured by Scanning Force Spectroscopy. Physica Status Solidi A 210 (5): 945 – 951Google Scholar
  56. 56.
    Puech PH et al (2006) A new technical approach to quantify cell–cell adhesion forces by AFM. Ultramicroscopy 106:637–644CrossRefGoogle Scholar
  57. 57.
    Ho KLG et al (1997) Nutrient leaching and end product accumulation in plastic composite supports for L-(+)-lactic acid biofilm fermentation. Appl Environ Microbiol 63(7):2524–2532Google Scholar
  58. 58.
    Demirci A et al (1993) Evaluation of biofilm reactor solid support for mixed-culture lactic-acid production. Appl Microbiol Biotechnol 38(6):728–733CrossRefGoogle Scholar
  59. 59.
    Demirci A et al (1995) Repeated-batch fermentation in biofilm reactors with plastic-composite suports for lactic-acid production. Appl Microbiol Biotechnol 43(4):585–589CrossRefGoogle Scholar
  60. 60.
    van Loosdrecht MCM et al (1987) The role of bacterial-cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53(8):1893–1897Google Scholar
  61. 61.
    Asther M et al (1990) A thermodynmic model to predict phanerochaete-chrysosporium Ina-12 adhesion to various solid carriers in relation to lignin peroxidase production. Biotechnol Bioeng 35(5):477–482CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • C. Müller-Renno
    • 1
  • S. Buhl
    • 2
  • N. Davoudi
    • 1
  • J. C. Aurich
    • 3
  • S. Ripperger
    • 2
  • R. Ulber
    • 4
  • K. Muffler
    • 4
  • Ch. Ziegler
    • 1
  1. 1.Department of Physics and Research Center OPTIMASUniversity of KaiserslauternKaiserslauternGermany
  2. 2.Department of Mechanical and Process EngineeringUniversity of KaiserslauternKaiserslauternGermany
  3. 3.Institute of Manufacturing Engineering and Production ManagementUniversity of KaiserslauternKaiserslauternGermany
  4. 4.Institute of Bioprocess EngineeringUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations